TAILIEUCHUNG - Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2

Tài liệu tóm tắt lý thuyết công thức nghiệm thu gọn và hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2 là tài liệu hữu ích giúp các em học sinh nắm được các kiến thức trong bài học một cách vững vàng và nâng cao kỹ năng giải bài tập hiệu quả. Mời các em cùng tham khảo. | Dưới đây là đoạn trích “Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2: Công thức nghiệm thu gọn” sẽ giúp các em hình dung nội dung tài liệu chi tiết hơn. Ngoài ra, các em có thể xem lại bài tập "Hướng dẫn giải bài 15,16 trang 45 Đại số 9 tập 2" Hướng dẫn và giải bài tập trang 49,50 SGK Toán 9 tập 2: Công thức nghiệm thu gọn Bài 17 trang 49 SGK Toán 9 tập 2 Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình: a) 4x2 + 4x + 1 = 0; b) 13852x2 – 14x + 1 = 0; c) 5x2 – 6x + 1 = 0; d) -3x2 + 4√6x + 4 = 0. Đáp án và hướng dẫn giải bài 17: a) 4x2 + 4x + 1 = 0 có a = 4, b = 4, b’ = 2, c = 1 ∆’ = 22 – 4 . 1 = 0: Phương trình có nghiệm kép x1 = x2 = -2/4 = -1/2 b) 13852x2 – 14x + 1 = 0 có a = 13852, b = -14, b’ = -7, c = 1 ∆’ = (-7)2 – 13852 . 1 = 49 – 13852 < 0 Phương trình vô nghiệm. c) 5x2 – 6x + 1 = 0 có a = 5, b = -6, b’ = -3, c = 1 ∆’ = (-3)2 – 5 . 1 = 4, √∆’ = 2 d) -3x2 + 4√6x + 4 = 0 có a = -3, b = 4√6, b’ = 2√6, c = 4. ∆’ = (2√6)2 – (-3) . 4 = 24 + 12 = 36, √∆’ = 6 Bài 18 trang 49 SGK Toán 9 tập 2 Đưa các phương trình sau về dạng ax2 + 2b’x + c = 0 và giải chúng. Sau đó, dùng bảng số hoặc máy tính để viết gần đúng nghiệm tìm được (làm tròn kết quả đến chữ số thập phân thứ hai): a) 3x2 – 2x = x2 + 3; b) (2x – √2)2 – 1 = (x + 1)(x – 1); c) 3x2 + 3 = 2(x + 1); d) 0,5x(x + 1) = (x – 1)2 Đáp án và hướng dẫn giải bài 19: a) 3x2 – 2x = x2 + 3 ⇔ 2x2 – 2x – 3 = 0. b’ = -1, ∆’ = (-1)2 – 2 . (-3) = 7 b) (2x – √2)2 – 1 = (x + 1)(x – 1) ⇔ 3x2 – 4√2 . x + 2 = 0 b’ = -2√2 ∆’ = (-2√2)2 – 3 . 2 = 2 c) 3x2 + 3 = 2(x + 1) ⇔ 3x2 – 2x + 1 = 0. b’ = -1; ∆’ = (-1)2 – 3 . 1 = -2 < 0 Phương trình vô nghiệm. d) 0,5x(x + 1) = (x – 1)2 ⇔ 0,5x2 – 2,5x + 1 = 0 ⇔ x2 – 5x + 2 = 0, b’ = -2,5; ∆’ = (-2,5)2 – 1 . 2 = 4,25 x1 = 2,5 + √4,25 ≈ 4,56, x2 = 2,5 – √4,25 ≈ 0,44 (Rõ ràng trong trường hợp này dùng công thức nghiệm thu gọn cũng không đơn giản hơn) Bài 19 trang 49 SGK Toán 9 tập 2 Đố em biết vì sao khi a > 0 và phương trình ax2 + bx + c = 0 vô

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.