TAILIEUCHUNG - Characterizations of matroid VIA OFR-Sets

The aim of this paper is to introduce the class of OFR-sets as the sets that are the intersection of an open set and a feeble-regular set. Several classes of matroids are studied via the new concept. New decompositions of strong maps are provided. | Turk J Math 25 (2001) , 445 – 455. ¨ ITAK ˙ c TUB Characterizations of Matroid VIA OFR-Sets Talal Ali Al-Hawary Abstract The aim of this paper is to introduce the class of OFR-sets as the sets that are the intersection of an open set and a feeble-regular set. Several classes of matroids are studied via the new concept. New decompositions of strong maps are provided. Key Words: Feeble-matroid, Strong map, Hesitant map, ORF-set, OFF-set, OFRset. 1. Introduction For an introduction on matroids see [3, 4, 7, 8, 9]. In particular, a matroid M is an ordered pair (E ,O) such that O is a collection of subsets, called open sets of M, of a finite set E , called the ground set of M, such that ∅ is an open set, unions of open sets are open and if O1 and O2 are open sets and x ∈ O1 ∩ O2 , there exists an open set O3 such that (O1 ∪ O2 ) − (O1 ∩ O2 ) ⊆ O3 ⊆ (O1 ∪ O2 ) − {x}. An equivalent way of defining a matroid M, is that M is an ordered pair (E , FM ) such that FM is a collection of subsets, called flats or closed sets of M, of a finite set E such that E ∈ FM , intersections of flats are flats and if F ∈ FM and {F1 , F2 , ., Fk } is the set of minimal members of FM (with respect to inclusion) that properly contain F , then ¯ Clearly F ∪ F ∪ . ∪ F = E. The closure of a subset A ⊆ E will be denoted by A. 1 2 k A¯ is the smallest flat containing A and x ∈ A¯ if and only if for every open set O in M that contains x, O ∩ A 6= ∅, see Oxley [4]. A is a spanning set of M if A¯ = E. Let M1 = (E 1 ,F1 ) and M2 = (E 2 ,F2 ) be matroids. A strong map f from M1 to M2 is a map f : E1 → E2 such that the inverse image of any flat of M2 is a flat of M1 . We abbreviate 1994 AMS Subject Classification. 05B35. 445 AL-HAWARY this as f : M1 → M2 . Clearly, f is strong if and only if the inverse image of any open set in M2 is open in M1 . A set U ⊆ E is called a feeble-open set (=FO-set) in M if there ¯ see Al-Hawary [1]. A subset A ⊆ E is exists an open set O ∈ O such that O ⊆ U

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.