# TAILIEUCHUNG - The principal eigencurves for a nonselfadjoint elliptic operator

## In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator. We obtain their variational formulation. We establish also the continuity and the differentiability of the principal eigencurves. | Turk J Math 34 (2010) , 197 – 205. ¨ ITAK ˙ c TUB doi: The principal eigencurves for a nonselfadjoint elliptic operator Aomar Anane, Omar Chakrone and Abdellah Zerouali Abstract In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator. We obtain their variational formulation. We establish also the continuity and the diﬀerentiability of the principal eigencurves. Key Words: Nonsefadjoint elliptic operator , principl eigenvalue, principl eigencurve, Holland’s formula. 1. Introduction In this paper we consider the following problem ⎧ 1 ⎪ ⎪ ⎨ To ﬁnd (λ, u) ∈ R × H (Ω) \ {0} such that (Pμ ) Lu − μm1 (x)u = λm2 (x)u ⎪ ⎪ ⎩ Bu = 0 in Ω, on ∂Ω, where Ω is a bounded C 1,1 domain in RN (N ≥ 1) with boundary ∂Ω, L is a second order elliptic operator of the form Lu := −div(A(x) +a0 (x)U, and B is a ﬁrst order boundary operator of Neumann or Robin type: Bu := b(x), ∇u + b0 (x)u, where , denotes the scalar product in RN , the coeﬃcient of L and B satisfy the condition where A(x) = (ai,j (x)) is a symmetric, uniformly positive deﬁnite N × N matrix, with ai,j ∈ C 0,1 (Ω), a and a0 ∈ L∞ (Ω), b and b0 ∈ C 0,1 (Ω), with b, ν > 0 (where ν is the unit exterior normal) and b0 ≥ 0 on ∂Ω, μ is a real parameter; and m1 and m2 ∈ L∞ (Ω) are possibly indeﬁnite weights, with m1 and m2 ≡ 0 . The selfadjoint case (a ≡ 0 ) was considered by several authors, in particular . Binding and Y. X. Huang in  , A. Dakkake and M. Hadda in  . For μ = 0 , the problem (Pμ ) was studied by T. Godoy, J. P. Gossez and 2000 AMS Mathematics Subject Classiﬁcation: 35J20, 35J70, 35P05, 35P30. 197 ANANE, CHAKRONE, ZEROUALI S. Paczka in  . They gave a formula of minimax type (called Holland’s formula (cf., .,  )) for the principal eigenvalues of this problem. They gave also an application of this formula of minimax to the antimaximum principle. In this paper we study the existence of the principal eigencurves for .

TÀI LIỆU LIÊN QUAN
9    7    0
TÀI LIỆU XEM NHIỀU
3    3517    63
24    2560    24
8    2159    11
29    2055    22
165    1826    1
35    1824    43
2    1778    10
64    1734    6
1    1665    7
15    1663    3
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
11    10    0    31-10-2020
8          31-10-2020
60    9    0    31-10-2020
10    6    0    31-10-2020
6    8    0    31-10-2020
6    5    0    31-10-2020
150    8    0    31-10-2020
59    8    0    31-10-2020
10    5    0    31-10-2020
45    7    0    31-10-2020
TÀI LIỆU HOT
580    1343    125
171    760    116
21    665    101
312    179    98
16    684    96
3    3517    63
116    119    57
37    191    56
51    345    55
17    232    54