# TAILIEUCHUNG - Trace formulae for Schr¨odinger systems on graphs

## For Schr¨odinger systems on metric graphs with δ-type conditions at the central vertex, firstly, we obtain precise description for the square root of the large eigenvalue up to the o(1/n)-term. Secondly, the regularized trace formulae for Schr¨odinger systems are calculated with some techniques in classical analysis. Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan. | Turk J Math 34 (2010) , 181 – 196. ¨ ITAK ˙ c TUB doi: Trace formulae for Schr¨ odinger systems on graphs Chuan-Fu Yang, Zhen-You Huang and Xiao-Ping Yang Abstract For Schr¨ odinger systems on metric graphs with δ -type conditions at the central vertex, ﬁrstly, we obtain precise description for the square root of the large eigenvalue up to the o(1/n) -term. Secondly, the regularized trace formulae for Schr¨ odinger systems are calculated with some techniques in classical analysis. Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan. Key Words: Schr¨ odinger systems, metric graph, δ -type conditions, trace formula, Ambarzumyan-type theorem 1. Introduction In a ﬁnite-dimensional space, an operator has a ﬁnite trace. But in an inﬁnite-dimensional space, ordinary diﬀerential operators do not necessarily have ﬁnite trace (the sum of all eigenvalues). But Gelfand and Levitan [15] observed that the sum n (λn − μn ) often makes sense, where {λn } and {μn } are the eigenvalues of the “perturbed problem” and “unperturbed problem”, respectively. The sum n (λn − μn ) is called a regularized trace. Gelfand and Levitan ﬁrst obtained an identity of trace for the Schr¨ odinger operator [15]. We describe brieﬂy here the result. Let λj , j = 0, 1, · · · , be eigenvalues of the eigenvalue problem −y (x) + q(x)y(x) = λy(x), y (0) = y (π) = 0. Then there is the following identity of trace: ∞ n=0 [λn − n2 − 1 π π q(x)dx] = 0 1 1 [q(π) + q(0)] − 4 2π π q(x)dx. 0 The trace identity of a diﬀerential operator deeply reveals spectral structure of the diﬀerential operator and has important applications in the numerical calculation of eigenvalues, inverse problem, theory of solitons, theory of integrable system [22, 41]. However, the calculation of every eigenvalue for the diﬀerential operator is very diﬃcult. The most important application of the trace formulae is in solving inverse problems .

TÀI LIỆU LIÊN QUAN
16    6    0
TÀI LIỆU XEM NHIỀU
24    2547    24
3    2406    59
8    2136    10
29    2029    20
165    1816    1
35    1794    43
2    1770    10
64    1725    6
1    1656    7
15    1653    3
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
2    6    0    26-10-2020
79    12    0    26-10-2020
34    10    0    26-10-2020
4    5    0    26-10-2020
3    6    0    26-10-2020
6    8    0    26-10-2020
4    7    0    26-10-2020
16    4    0    26-10-2020
12    25    0    26-10-2020
2    8    0    26-10-2020
TÀI LIỆU HOT
580    1335    125
171    741    116
312    174    98
21    564    98
16    606    94
3    2407    59
116    107    57
37    186    55
51    326    54
17    177    52