# TAILIEUCHUNG - On orders and types of Dirichlet series of slow growth

## The present paper has the object of showing some interesting relationship on the maximum modulus, the maximum term, the index of maximum term and the coefficients of entire functions defined by Dirichlet series of slow growth some properties like Taylor entire functions are obtained. | Turk J Math 34 (2010) , 1 – 11. ¨ ITAK ˙ c TUB doi: On orders and types of Dirichlet series of slow growth Yinying Kong and Huilin Gan Abstract The present paper has the object of showing some interesting relationship on the maximum modulus, the maximum term, the index of maximum term and the coeﬃcients of entire functions deﬁned by Dirichlet series of slow growth; some properties like Taylor entire functions are obtained. Key Words: Dirichlet series, generalized order, generalized type. 1. Introduction and main results The growth and the value distribution of Taylor entire functions f(z) = +∞ bn z n n=0 were studied for a long time and many important results were obtained in [1],[2] and [3]. For instance, . Bajpai gave some diﬀerent characterizations on the coeﬃcients and the maximum modulus, the maximum term, and the index of maximum term for the entire functions of fast growth ρ = ∞ in [1] . On the other hand, . Kapoor [3] and Ramesh Ganti [2] continued this work and deﬁned a generalized order and a generalized type for the Taylor entire functions of slow growth ρ = 0 . Dirichlet series was introduced by L. Dirichlet in 19th century and it has the form: f(s) = +∞ bn eλn s , (1) n=1 where {bn } ∈ C, 0 0 , that is, h(x) is slowly increasing. Deﬁnition 2 Let α(x) ∈ Λ , the generalized order of the entire function f(s) deﬁned by (1) can be deﬁned as α(ln M (σ)) , σ→+∞ α(σ) ρ = ρ(α; f) = lim 2 KONG, GAN if the order is of slow growth . ρ ∈ (0, ∞), and then the type τ (α; f) of (1) is deﬁned by τ = τ (α; f) = lim σ→+∞ α(M (σ)) β(ln M (σ)) = lim , σ ρ σ→+∞ [α(e )] [β(σ)]ρ where β(ln x) = α(x). Theorem 1 Suppose that Dirichlet series (1) satisﬁes (2) and (3), then 1o 2o lim lim σ→+∞ α(ln M (σ)) α(λn ) − 1 = lim , 1 σ→+∞ α(σ) α(ln

TÀI LIỆU LIÊN QUAN
11    26    0
10    14    0
25    18    0
172    22    0
10    14    1
TÀI LIỆU XEM NHIỀU
3    6372    87
14    4501    234
8    3919    1442
8    3612    1
2    2981    24
24    2964    55
9    2731    3
35    2710    135
29    2596    73
8    2483    20
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
94    24    0    18-05-2021
123    26    0    18-05-2021
16    16    0    18-05-2021
14    7    1    18-05-2021
19    29    1    18-05-2021
232    37    1    18-05-2021
12    20    0    18-05-2021
16    21    0    18-05-2021
6    34    0    18-05-2021
30    16    0    18-05-2021
TÀI LIỆU HOT
8    3919    1442
112    840    394
122    814    296
14    4501    234
20    1624    209
36    1307    199
35    1111    196
21    2052    177
16    2081    176
171    1095    168