TAILIEUCHUNG - An Efficient Implementation of Advanced Encryption Standard on the Coarse-grained Reconfigurable Architecture
This paper presents a flexible, highperformance implementation of the AES algorithm on a coarse-grained reconfigurable architecture, called MUSRA (Multimedia Specific Reconfigurable Architecture). First, we propose a hardware-software partitioning method for mapping the AES algorithm onto the MUSRA. Second, the parallel and pipelining techniques are considered thoughtfully to increase total computing throughput by efficiently utilizing the computing resources of the MUSRA. | VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 10-22 An Efficient Implementation of Advanced Encryption Standard on the Coarse-grained Reconfigurable Architecture Hung K. Nguyen*, Xuan-Tu Tran SIS Laboratory, VNU University of Engineering and Technology, 144 Xuan Thuy road, Cau Giay district, Hanoi, Vietnam Abstract The Advanced Encryption Standard (AES) is currently considered as one of the best symmetric-key block ciphers. The hardware implementation of the AES for hand-held mobile devices or wireless sensor network nodes is always required to meet the strict constraints in terms of performance, power and cost. Coarse-grained reconfigurable architectures are recently proposed as the solution that provides high flexibility, high performance and low power consumption for the next-generation embedded systems. This paper presents a flexible, highperformance implementation of the AES algorithm on a coarse-grained reconfigurable architecture, called MUSRA (Multimedia Specific Reconfigurable Architecture). First, we propose a hardware-software partitioning method for mapping the AES algorithm onto the MUSRA. Second, the parallel and pipelining techniques are considered thoughtfully to increase total computing throughput by efficiently utilizing the computing resources of the MUSRA. Some optimizations at both loop transformation level and scheduling level are performed in order to make better use of instruction-, loop- and task- level parallelism. The proposed implementation has been evaluated by the cycle-accurate simulator of the MUSRA. Experimental results show that the MUSRA can be reconfigured to support both encryption and decryption with all key lengths specified in the AES standard. The performance of the AES algorithm on the MUSRA is better than that of the ADRES reconfigurable processor, Xilinx Virtex-II, and the TI C64+ DSP. Received 24 November 2015, revised 06 January 2015, accepted 13 January 2016 Keywords: Coarse-grained .
đang nạp các trang xem trước