TAILIEUCHUNG - Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2012-2013 - Sở GD&ĐT Gia Lai

Để dễ dàng bước qua kì thi tuyển sinh vào lớp 10, cách ôn luyện hiệu quả nhất là giải các đề thi tuyển sinh của các năm trước. Xin giới thiệu đến các em "Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2012-2013 - Sở GD&ĐT Gia Lai", nội dung đề thi bám sát chương trình học, cấu trúc đề trình bày rõ ràng và khoa học. Mời các em tham khảo! | Chương trình luyện thi lớp 10 chuyên năm 2017 Vững vàng nền tảng, Khai sáng tương lai Môn: Toán học SỞ GIÁO DỤC VÀ ĐÀO TẠO GIA LAI Đề chính thức Ngày thi: 26/6/2012 KỲ THI TUYỂN SINH VÀO LỚP 10 CHUYÊN Năm học 2012 – 2013 Môn thi: Tốn (không chuyên) Thời gian làm bài: 120 phút Câu 1. (2,0 điểm) x 2 x 2 x x , với x 0, x 1 x 2 x 1 x 1 Cho biểu thức Q a. Rút gọn biểu thức Q b. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên. Câu 2. (1,5 điểm) Cho phương trình x 2 2(m 1)x m 2 0 , với x là ẩn số, m R a. Giải phương trình đã cho khi m – 2 b. Giả sử phương trình đã cho có hai nghiệm phân biệt x1 và x2 . Tìm hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào m. Câu 3. (2,0 điểm) (m 1)x (m 1) y 4m , với m R x (m 2) y 2 Cho hệ phương trình a. Giải hệ đã cho khi m –3 b. Tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó. Câu 4. (2,0 điểm) Cho hàm số y x2 có đồ thị (P). Gọi d là đường thẳng đi qua điểm M(0;1) và có hệ số góc k. a. Viết phương trình của đường thẳng d b. Tìm điều kiện của k để đt d cắt đồ thị (P) tại hai điểm phân biệt. Câu 5. (2,5 điểm) Cho tam giác nhọn ABC (AB < AC < BC) nội tiếp trong đường tròn (O). Gọi H là giao điểm của hai đường cao BD và CE của tam giác ABC (D AC, E AB) a. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn b. Gọi I là điểm đối xứng với A qua O và J là trung điểm của BC. Chứng minh rằng ba điểm H, J, I thẳng hàng c. Gọi K, M lần lượt là giao điểm của AI với ED và BD. Chứng minh rằng 1 1 1 2 2 DK DA DM 2 Website: - Bộ phận tư vấn: 098 1821 807 Trang

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.