TAILIEUCHUNG - Chuyên đề: Phương pháp tọa độ tỉ cự và các ứng dụng trong hình học phẳng

Chuyên đề: Phương pháp tọa độ tỉ cự và các ứng dụng trong hình học phẳng được biên soạn với mong muốn cung cấp thêm một phương pháp hay và rất bổ ích để rèn luyện hình học phẳng. Để hiểu rõ hơn nội dung kiến thức chuyên đề tài liệu. | Phan Đức Minh 12A15, THPT Thái Phiên, khóa 2008 - 2011 PHƯƠNG PHÁP TỌA ĐỘ TỈ CỰ VÀ CÁC ỨNG DỤNG TRONG HÌNH HỌC PHẲNG Hải Phòng - 3/2011 Lời nói đầu Bên cạnh các hệ tọa độ quen thuộc đã biết như hệ trục tọa độ Descartes vuông góc, tọa độ cực, hệ tọa độ Affine của hình học xạ ảnh, hình học hiện đại còn đưa ra một lý thuyết rất thú vị một lần nữa thể hiện mối quan hệ mật thiết giữa hình học và đại số mà ở đó, tọa độ của các điểm xác định nhờ một hình cơ sở thông qua các đại lượng vector, đó chính là tọa độ tỉ cự (Barycentric Coordinates). Nhờ có các công thức, các kết quả xây dựng từ trước mà những tính toán và biến đổi hình học thông thường đã được mô hình hóa thành một lớp các đại lượng và các quan hệ ràng buộc mang bản chất hình học giữa chúng. Khái niệm này đã được giới thiệu lần đầu tiên bởi giáo sư Toán người Đức August Ferdinand M¨bius vào năm o 1827. Trải qua nhiều thế hệ các nhà Toán học nghiên cứu, bổ sung và phát triển, đến nay, khái niệm tọa độ tỉ cự đã trở nên rất quen thuộc và thể hiện rõ hiệu quả của nó trong việc nghiên cứu hình học phẳng và đặc biệt là các tính chất của tam giác. Với mong muốn cung cấp thêm một phương pháp hay và rất bổ ích để rèn luyện hình học phẳng, tôi đã giành thời gian tìm hiểu, phân tích và chọn lọc các vấn đề liên quan để trình bày chúng dưới dạng một chuyên đề nhằm có thể giới thiệu đến tất cả các bạn yêu Toán. Bên cạnh phần lý thuyết được trình bày rõ ràng và kĩ lưỡng, các phần ví dụ minh họa cũng được chọn lọc cẩn thận để các bạn có thể thấy rõ được ý nghĩa của phương pháp này. Nắm vững phương pháp này có thể chính là một con đường để chúng ta vượt qua những mối lo ngại đối với hình học phẳng và cũng có thể nhờ đó mà chúng ta tìm ra được những hướng giải quyết mới cho các bài toán hình học, thậm chí là những bài hóc búa, phức tạp. Tuy đã được đại số hóa khá nhiều nhưng ẩn chứa dưới những công thức dày đặc vẫn là mối quan hệ hình học thuần túy, những vẻ đẹp sâu sắc không thể mất đi được. Mong rằng tài liệu này sẽ thực sự

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.