TAILIEUCHUNG - Conic Construction of a Triangle from the Feet of Its Research Angle bisectors

Conic Construction of a Triangle from the Feet of Its Research Angle bisectors be content with: The angle bisectors problem, the cubic Ka, Existence of solutions to the angle bisectors problem, the hyperbola Ca, conic solution of the angle bisectors problem, examples, the angle bisectors problem for a right triangle, triangles from the feet of external angle bisectors. Invite you to consult the documentation | Conic Construction of a Triangle from the Feet of Its Angle Bisectors Paul Yiu Abstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given a triangle ABC, we give a conic construction of points which are the incenter or excenters of their own anticevian triangles with respect to ABC. If the given triangle contains a right angle, a very simple ruler-and-compass construction is possible. We also examine the case when the feet of the three external angle bisectors are three given points on a line. 1. The angle bisectors problem In this note we address the problem of construction of a triangle from the endpoints of its angle bisectors. This is Problem 138 in Wernick’s list [3]. The corresponding problem of determining a triangle from the lengths of its angle bisectors have been settled by Mironescu and Panaitopol [2]. A′ B C P B′ C′ A Figure 1. The angle bisectors problem Given a triangle ABC, we seek, more generally, a triangle A′ B ′ C ′ such that the lines A′ A, B ′ B, C ′ C bisect the angles B ′ A′ C ′ , C ′ A′ B ′ , A′ C ′ B ′ , internally or externally. In this note, we refer to this as the angle bisectors problem. With reference to triangle ABC, A′ B ′ C ′ is the anticevian triangle of a point P , which is the incenter or an excenter of triangle A′ B ′ C ′ . It is an excenter if two of the lines A′ P , B ′ P , C ′ P are external angle bisectors and the remaining one an internal angle bisector. For a nondegenerate triangle ABC, we show in §3 that the angle bisectors problem always have real solutions, as intersections of three cubics. We proceed to provide a conic solution in §§4, 5, 6. The particular case of right triangles has an To appear in Journal for Geometry and Graphics, 12 (2008) 133–144. 1 2 P. Yiu elegant ruler-and-compass solution which we provide in §7. Finally, the construction of a triangle from the feet of its external angle bisectors will be considered in §8. In .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.