Đang chuẩn bị liên kết để tải về tài liệu:
Chuyên đề bất đẳng thức tích phân - Nguyễn Khánh Phú

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'chuyên đề bất đẳng thức tích phân - nguyễn khánh phú', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Ts. Nguyen Phu Khanh - Đà Lạt Chuyen Đe Bat Đẳng Thức Tích Phân Chứng minh rằng 1. n f 1 dx n 4 J 3 - 2 sin2 x 2 . _ c1 1 . n 4. In 2 1 j dx 4 j01 Wx 4 yJ3 CÁ cotg 1 2. .1 L dx 4 12 J x 3 5. J1 dx 4 J x2 x 1 8 3. 1 if2 1 A dx 4 2 J0 71 - x6 6 n -1 7x n 6.74 I -ĩ Ỳ - dx 7 18 J x5 x4 x3 3 973 1 n n 2. 4 x 4 s 4 3 Bài giải 1.4 x 3- L sin x 1 Ị sin2 x 1 1 2 sin2 x 2 1 3 - 2 sin2 x 2 Ị - 1 . 1 4 4-72 2 2 3 - 2sin2x 1 dx í Í7 dx 4 dx n - 4 dx n 2J n4 Jn4 3 - 2sin2x Jn4 4 Jn4 3 - 2sin2x 2 4 cotgx 1 . f- . 73 73 cotgx 4 yj3 cotgx 4 CÁ . . L dx L dx -í3dx 3 14 n x n n 4 Jn4 x rcJ - _n x n 73 cotgx 1 43 í73 dx 4 12 J4 x 3 Bài toán này co the giai theo phương pháp đạo hàm. 3. 0 x 1 1 0 x6 . x2 1 -1 -x2 -x6 0 0 1 - x2 1 - x6 2 1 1 1 7 í dx í 1 dx I 71 -x6 71 -x2 j0 Jo 71 -x6 TA. T CÁ 1 . _ Vơi I dx Đạt x sint t E j0 71-v x------0----12 I 0 costdt 0dt n Vày 1 f Í0 71 - sin21 Í0 2 Í0 -x2 7 1 -x6 1 n n 2 2 dx cos tdt 1 . n ----dx 4 - x6 6 t 4. 0 x 1 x 7x 1 x2 x7x 4 t4c .7 1 E 0 1 Dau dang thức trong 1 xay ra khi Tx 0 x 1 Do do f J0 VT 1 VG 1 xE0 VG. VP. VG 1 V r 1 1 f1 1 f1 dx f1 1 n dx ------J dx I ln2 ------ dx 4 x J 1 x7x j0x2 1 J 1 x7x 4 Chu y J 1 12 dx 4 Xem bai tap 5 . 1 Ts. Nguyen Phu Khanh - Đà Lạt Chuyên Đề Bat Đẳng Thức Tích Phân 5. 0 x 1 x2 x x2 x2 x2 x 2 2x2 x2 x 2 ------ _ . x2 x 2 2 x2 1 í-1 1 lí-1 1 r 1 ---------- dx - - dx I I ---- dx Jo x2 x 2 2J x2 1 Jo1 x2 . 1 .9. . Đẳt x tgt dx dt 1 tg2 t dt cos21 x 0 t 0 2 f 1 tg t n r n I I 2 dt I 4 dt I Jo 1 tg21 Jo 4 4 Vẳy í .3 9 dx n 8 0 x5 x3 0 x4 x3 6. 0 x 1 0 x5 x4 2x3 x3 3 x5 x4 x3 3 3x3 3 1 1 1 Vx vx yfx 3x3 3 x5 x4 x3 3 x3 3 3x3 3 x5 x4 x3 3 x3 3 . r Vĩ . fi x ĩ . í 1 Vĩ .7 dx dx -dx 1 J0 3 x3 3 J0 x5 x4 x3 3 J0 x3 3 S Í1 4x n-1 Jx - dx -dx 03x3 3 3J0 x3 1 Đẳt x 12 t 0 dx 2tdt r 1 f1 21 2 f1 3t2.dt t 0 I1 3Í0 6 1 dt 9 J0 3 2 1 Đẳt u t du 3t2dt ---------0 x 0 1 t 0 1 1 2 -1 du 7 I 7T I 2 1 1 9J0 u2 1 n 18 . nz Ket quẳ I 4 bẳi tẳp 5 2 -fo 9 97 3 tứÔng tứ Vẳy 1 I1 Í .V n x 3 dv I2 n f _dx 18 Is x4 x3 3 9V3

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.