TAILIEUCHUNG - DISCRETE-SIGNAL ANALYSIS AND DESIGN- P32

DISCRETE-SIGNAL ANALYSIS AND DESIGN- P32:Electronic circuit analysis and design projects often involve time-domain and frequency-domain characteristics that are difÞcult to work with using the traditional and laborious mathematical pencil-and-paper methods of former eras. This is especially true of certain nonlinear circuits and sys- tems that engineering students and experimenters may not yet be com- fortable with. | THE HILBERT TRANSFORM 141 N-1 xh n k 0 k XH n -exp -j-2-n- -n xa n Re x n - j Re xh n h 50 0 20 30 60 n 10 40 i N-1 XA k -1 xa n exp -j 2 n n 0 j n Nk Re XA k k Figure 8-3 continued 142 DISCRETE-SIGNAL ANALYSIS AND DESIGN f The spectrum XH k is converted to the time domain xh n using the IDFT. This is the Hilbert transform HT of the input signal x n . g The HT xh n of the input signal sequence is plotted. Note that xh n is a real sequence as is x n . h The formula xa n for the complex analytic signal in the time domain. i There are two time-domain plot sequences one dashed for the imaginary part of xa n and one solid for the real part of xa n . These I and Q sequences are in phase quadrature. j The spectrum XA k of the analytic signal is calculated. k The spectrum of the analytic signal is plotted. Only the negativefrequency real components 2 same as 62 and 8 same as 56 appear because the minus sine was used in part H . If the plus sign were used in part h only the positive-frequency real components at 2 and 8 would appear in part k . Note that the amplitudes of the frequency components are twice those of the original spectrum in part c . All of this behavior can be understood by comparing parts c and e where the components at 2 and 8 cancel and those at 2 and 8 add but only after the equation in part h is used. The j operator in part h aligns the components in the correct phase either to augment or to cancel. This is the baseband analytic signal also known as the lowpass equivalent spectrum Carlson 1986 pp. 198-199 that is centered at zero frequency. To use this signal for example in radio communication it must be frequency-translated. It then becomes a true single-sideband signal at positive SSB frequencies with suppressed carrier. If this SSB RF signal is represented as phasors it is a two-sided SSB phasor spectrum one SSB sideband at positive RF frequencies and the other SSB sideband at negative RF frequencies. The value of the positive suppressed carrier .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.