TAILIEUCHUNG - Đề và đáp án ôn tập Toán 11 HK 2 (Đề số 26)
"Đề ôn tập Toán 11 HK 2 (Đề số 26)" có cấu trúc gồm 2 phần: phần 1 có 4 câu hỏi bài tập, phần 2 được chọn theo chương trình chuẩn hoặc chương trình nâng cao. Thời gian làm bài trong vòng 90 phút, ngoài ra tài liệu còn kèm theo đáp án hướng dẫn giải nhằm giúp các bạn kiểm tra củng cố kiến thức. !. | Đề số 26 ĐỀ THI THỬ HỌC KÌ 2 – Năm học 2010 – 2011 Môn TOÁN Lớp 11 Thời gian làm bài 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) b) Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm : Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) b) Câu 4: (3,0 điểm) Cho hình chóp có đáy ABC là tam giác đều cạnh bằng a, SA (ABC), SA = . a) Gọi M là trung điểm của BC. Chứng minh rằng: BC (SAM). b) Tính góc giữa các mặt phẳng (SBC) và (ABC). c) Tính khoảng cách từ A đến mặt phẳng (SBC). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh phương trình: có ít nhất hai nghiệm thuộc –1; 1 . Câu 6a: (2,0 điểm) a) Cho hàm số . Tính . b) Cho hàm số có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm I(1; –2). 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh phương trình: có 3 nghiệm phân biệt. Câu 6b: (2,0 điểm) a) Cho hàm số . Chứng minh rằng: . b) Viết phương trình tiếp tuyến của đồ thị (C) của hàm số tại giao điểm của (C) với trục tung. --------------------Hết------------------- Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . ĐÁP ÁN ĐỀ KIỂM TRA HỌC KÌ II – NĂM HỌC 2010 – 2011 MÔN TOÁN LỚP 11 – ĐỀ SỐ 26 Câu Ý Nội dung Điểm 1 a) 0,50 0,50 b) 0,50 = 0 0,50 2 (1) 0,25 (2) 0,25 (3) 0,25 Từ (1), (2), (3) hàm số không liên tục tại x = 1 0,25 3 a) 0,50 b) 0,50 4 0,25 a) Tam giác ABC đều, (1) 0,25 cân tại S (2) 0,25 Từ (1) và (2) suy ra BC (SAM) 0,25 b) (SBC) (ABC) = BC, 0,50 0,25 AM = 0,25 c) Vì BC (SAM) (SBC) (SAM) 0,25 0,25 0,25 0,25 5a Gọi liên tục trên R 0,25 f(–1) = 2, f(0) = –3 f(–1).f(0) < 0 PT có ít nhất 1 nghiệm 0,25 f(0) = –3, f(1) = 4 PT có ít nhất 1 nghiệm 0,25 Mà PT có ít nhát hai nghiệm thuộc khoảng . 0,25 6a a) 0,50 0,50 b) 0,50 0,50 5b (*). Gọi liên tục trên R f(–2) = –1, f(0) = 1 là một nghiệm của (*) 0,25 f(0) = 1, f(1) = –1 là một nghiệm của (*) 0,25 là một nghiệm của (*) 0,25 Dễ thấy phân biệt nên PT (*) có ba nghiệm phân biệt 0,25 6b a) 0,50 0,25 0,25 b) Giao điểm của ( C ) với Oy là A(0; 1) 0,25 0,25 0,25 Vậy phương trình tiếp tuyến tại A(0; 1) là 0,25
đang nạp các trang xem trước