TAILIEUCHUNG - Báo cáo khoa học: "REVERSIBLE AUTOMATA AND INDUCTION OF THE ENGLISH AUXILIARY SYSTEM"

M I T ArtificialIntelligenceLaboratory 545 Technology Square Cambridge, M A 02139, U S A ABSTRACT In this paper we apply some recent work of Angluin (1982) to the induction of the English auxiliary verb system. In general, the induction of finiteautomata is computationally intractable. However, Angluin shows that restricted finite automata, the It-reversible automata, can be learned by el~cient (polynomial time) algorithms. W e present an explicit computer model demonstrating that the English auxiliary verb system can in fact be learned as a I-reversible automaton, and hence in a computationally feasibleamount of time. The entire system can be acquired. | REVERSIBLE AUTOMATA AND INDUCTION OF THE ENGLISH AUXILIARY SYSTEM Samuel F. Pilato Robert c. Berwick MIT Artificial Intelligence Laboratory 545 Technology Square Cambridge MA 02139 USA ABSTRACT In this paper we apply some recent work of Angluin 1982 to the induction of the English auxiliary verb system. In general the induction of finite automata is computationally intractable. However Angluin shows that restricted finite automata the k-reversible automata can be learned by efficient polynomial time algorithms. We present an explicit computer model demonstrating that the English auxiliary verb system can in fact be learned as a 1-reversible automaton and hence in a computationally feasible amount of time. The entire system can be acquired by looking at only half the possible auxiliary verb sequences and the pattern of generalization seems compatible with what is known about human acquisition of auxiliaries. We conclude that certain linguistic subsystems may well be learnable by inductive inference methods of this kind and suggest an extension to context-free languages. INTRODUCTION Formal inductive inference methods have rarely been applied to actual natural language systems. Linguists generally suppose that languages are easy to learn because grammars are highly constrained no general purpose inductive inference methods are required. This assumption has generally led to fruitful insights on the nature of grammars. Yet it remains to determine whether all of a language is learned in a grammar-specific manner. In this paper we show how to successfully apply one computationally efficient inductive inference algorithm to the acquisition of a domain of English syntax. Our results suggest that particular language subsystems can be learned bj general induction procedures given certain general constraints. The problem is that these methods are in general computationally intractable. Even for regular languages induction can be exponentially difficult Gold 1978 . This .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.