TAILIEUCHUNG - Báo cáo khoa học: "Improved Word-Level System Combination for Machine Translation"

Recently, confusion network decoding has been applied in machine translation system combination. Due to errors in the hypothesis alignment, decoding may result in ungrammatical combination outputs. This paper describes an improved confusion network based method to combine outputs from multiple MT systems. In this approach, arbitrary features may be added log-linearly into the objective function, thus allowing language model expansion and re-scoring. Also, a novel method to automatically select the hypothesis which other hypotheses are aligned against is proposed. . | Improved Word-Level System Combination for Machine Translation Antti-Veikko I. Rosti and Spyros Matsoukas and Richard Schwartz BBN Technologies 10 Moulton Street Cambridge MA 02138 arosti smatsouk schwartz @ Abstract Recently confusion network decoding has been applied in machine translation system combination. Due to errors in the hypothesis alignment decoding may result in ungrammatical combination outputs. This paper describes an improved confusion network based method to combine outputs from multiple MT systems. In this approach arbitrary features may be added log-linearly into the objective function thus allowing language model expansion and re-scoring. Also a novel method to automatically select the hypothesis which other hypotheses are aligned against is proposed. A generic weight tuning algorithm may be used to optimize various automatic evaluation metrics including TER BLEU and METEOR. The experiments using the 2005 Arabic to English and Chinese to English NIST MT evaluation tasks show significant improvements in BLEU scores compared to earlier confusion network decoding based methods. 1 Introduction System combination has been shown to improve classification performance in various tasks. There are several approaches for combining classifiers. In ensemble learning a collection of simple classifiers is used to yield better performance than any single classifier for example boosting Schapire 1990 . Another approach is to combine outputs from a few highly specialized classifiers. The classifiers may 312 be based on the same basic modeling techniques but differ by for example alternative feature representations. Combination of speech recognition outputs is an example of this approach Fiscus 1997 . In speech recognition confusion network decoding Mangu et al. 2000 has become widely used in system combination. Unlike speech recognition current statistical machine translation MT systems are based on various different paradigms for example phrasal .

TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.