TAILIEUCHUNG - Báo cáo khoa học: "Applying a Grammar-based Language Model to a Simplified Broadcast-News Transcription Task"

We propose a language model based on a precise, linguistically motivated grammar (a hand-crafted Head-driven Phrase Structure Grammar) and a statistical model estimating the probability of a parse tree. The language model is applied by means of an N-best rescoring step, which allows to directly measure the performance gains relative to the baseline system without rescoring. To demonstrate that our approach is feasible and beneficial for non-trivial broad-domain speech recognition tasks, we applied it to a simplified German broadcast-news transcription task. We report a significant reduction in word error rate compared to a state-of-the-art baseline system. . | Applying a Grammar-based Language Model to a Simplified Broadcast-News Transcription Task Tobias Kaufmann Speech Processing Group ETH Zurich Zurich Switzerland kaufmann@ Beat Pfister Speech Processing Group ETH Zurich Zurich Switzerland pfister@ Abstract We propose a language model based on a precise linguistically motivated grammar a hand-crafted Head-driven Phrase Structure Grammar and a statistical model estimating the probability of a parse tree. The language model is applied by means of an N-best rescoring step which allows to directly measure the performance gains relative to the baseline system without rescoring. To demonstrate that our approach is feasible and beneficial for non-trivial broad-domain speech recognition tasks we applied it to a simplified German broadcast-news transcription task. We report a significant reduction in word error rate compared to a state-of-the-art baseline system. 1 Introduction It has repeatedly been pointed out that N-grams model natural language only superficially an Nth-order Markov chain is a very crude model of the complex dependencies between words in an utterance. More accurate statistical models of natural language have mainly been developed in the field of statistical parsing . Collins 2003 Charniak 2000 and Ratnaparkhi 1999 . Other linguistically inspired language models like Chelba and Jelinek 2000 and Roark 2001 have been applied to continuous speech recognition. These models have in common that they explicitly or implicitly use a context-free grammar induced from a treebank with the exception of Chelba and Jelinek 2000 . The probability of a rule expansion or parser operation is conditioned on various contextual information and the derivation history. An important reason for the success of these models is the fact that they are lexicalized the probability distributions are also conditioned on the actual words occuring in the utterance and not only on their parts of speech. Most .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.