TAILIEUCHUNG - Báo cáo khoa học: "Predicting Unknown Time Arguments based on Cross-Event Propagation"

Many events in news articles don’t include time arguments. This paper describes two methods, one based on rules and the other based on statistical learning, to predict the unknown time argument for an event by the propagation from its related events. The results are promising – the rule based approach was able to correctly predict 74% of the unknown event time arguments with 70% precision. | Predicting Unknown Time Arguments based on Cross-Event Propagation Prashant Gupta Indian Institute of Information Technology Allahabad Allahabad India 211012 greatprach@ Heng Ji Computer Science Department Queens College and the Graduate Center City University of New York New York NY 11367 UsA hengji@ Abstract Many events in news articles don t include time arguments. This paper describes two methods one based on rules and the other based on statistical learning to predict the unknown time argument for an event by the propagation from its related events. The results are promising - the rule based approach was able to correctly predict 74 of the unknown event time arguments with 70 precision. 1 Introduction Event time argument detection is important to many NLP applications such as textual inference Baral et al. 2005 multi-document text summarization . Barzilay e al. 2002 temporal event linking . Bethard et al. 2007 Chambers et al. 2007 Ji and Chen 2009 and template based question answering Ahn et al. 2006 . It s a challenging task in particular because about half of the event instances don t include explicit time arguments. Various methods have been exploited to identify or infer the implicit time arguments . Filatova and Hovy 2001 Mani et al. 2003 Lapata and Lascarides 2006 Eidelman 2008 . Most of the prior work focused on the sentence level by clustering sentences into topics and ordering sentences on a time line. However many sentences in news articles include multiple events with different time arguments. And it was not clear how the errors of topic clustering techniques affected the inference scheme. Therefore it will be valuable to design inference methods for more fine-grained events. In addition in the previous approaches the linguistic evidences such as verb tense were mainly applied for inferring the exact dates of implicit time expressions. In this paper we are interested in those more challenging cases in which an event .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.