TAILIEUCHUNG - Báo cáo khoa học: "Efficient Optimization of an MDL-Inspired Objective Function for Unsupervised Part-of-Speech Tagging"

The Minimum Description Length (MDL) principle is a method for model selection that trades off between the explanation of the data by the model and the complexity of the model itself. Inspired by the MDL principle, we develop an objective function for generative models that captures the description of the data by the model (log-likelihood) and the description of the model (model size). We also develop a efficient general search algorithm based on the MAP-EM framework to optimize this function. . | Efficient Optimization of an MDL-Inspired Objective Function for Unsupervised Part-of-Speech Tagging Ashish Vaswani1 Adam Pauls2 David Chiang1 information Sciences Institute University of Southern California 4676 Admiralty Way Suite 1001 Marina del Rey CA 90292 avaswani chiang @ Abstract The Minimum Description Length MDL principle is a method for model selection that trades off between the explanation of the data by the model and the complexity of the model itself. Inspired by the MDL principle we develop an objective function for generative models that captures the description of the data by the model log-likelihood and the description of the model model size . We also develop a efficient general search algorithm based on the MAP-EM framework to optimize this function. Since recent work has shown that minimizing the model size in a Hidden Markov Model for part-of-speech POS tagging leads to higher accuracies we test our approach by applying it to this problem. The search algorithm involves a simple change to EM and achieves high POS tagging accuracies on both English and Italian data sets. 1 Introduction The Minimum Description Length MDL principle is a method for model selection that provides a generic solution to the overfitting problem Barron et al. 1998 . A formalization of Ockham s Razor it says that the parameters are to be chosen that minimize the description length of the data given the model plus the description length of the model itself. It has been successfully shown that minimizing the model size in a Hidden Markov Model HMM for part-of-speech POS tagging leads to higher accuracies than simply running the ExpectationMaximization EM algorithm Dempster et al. 1977 . Goldwater and Griffiths 2007 employ a Bayesian approach to POS tagging and use sparse Dirichlet priors to minimize model size. More re- 2Computer Science Division University of California at Berkeley Soda Hall Berkeley CA 94720 adpauls@ cently Ravi and Knight 2009 .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.