TAILIEUCHUNG - KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2010-2011 Môn : TOÁN – THCS

Câu 2:(2,0 điểm) Cho hàm số y = f(x) = (3m2 – 7m +5) x – 2011 (*) . Chứng minh hàm số (*) luôn đồng biến trên R với mọi m. Câu 3:( 2,0 điểm) Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B . Trên đường thẳng AB lấy điểm M sao cho A nằm giữa M và B . Từ M kẻ cát tuyến MCD với đường tròn (O) và tiếp tuyến MT với đường tròn (O’) (T là tiếp điểm) Chứng minh = MT2 . | SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LÂM ĐỒNG NĂM HỌC 2010-2011 Môn : TOÁN – THCS ĐỀ CHÍNH THỨC Thời gian : 150 phút ( không kể thời gian giao đề) (Đề thi gồm có 1 trang) Ngày thi : 18/02/2011 Câu 1: (2,0 điểm ) Rút gọn . Câu 2:(2,0 điểm) Cho hàm số y = f(x) = (3m2 – 7m +5) x – 2011 (*) . Chứng minh hàm số (*) luôn đồng biến trên R với mọi m. Câu 3:( 2,0 điểm) Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B . Trên đường thẳng AB lấy điểm M sao cho A nằm giữa M và B . Từ M kẻ cát tuyến MCD với đường tròn (O) và tiếp tuyến MT với đường tròn (O’) (T là tiếp điểm) Chứng minh = MT2 . Câu 4: (2,0 điểm ) Cho hai số dương x, y thỏa mãn điều kiện 3x + y – 1 = 0 . Tìm giá trị nhỏ nhất của biểu thức B = 3x2 + y2 . Câu 5: (1,5 điểm) Chứng minh tổng C = 1 + 2 + 22 + + 22011 chia hết cho 15 . Câu 6: (1,5 điểm ) Phân tích đa thức x3 – x2 – 14x + 24 thành nhân tử . Câu 7: (1,5 điểm) Giải hệ phương trình Câu 8: (1,5 điểm ) Chứng minh D = n(n + 1)(n + 2)(n + 3) không phải là số chính phương với mọi n . Câu 9: (1,5 điểm ) Cho hai số dương a và b . Chứng minh . Câu 10:(1,5 điểm ) Tìm nghiệm tự nhiên của phương trình : 2x2 – xy – y2 – 8 = 0 Câu 11: (1,5 điểm ) Cho hình thang vuông ABCD ( ) , có DC = 2AB . Kẻ DH vuông góc với AC (H , gọi N là trung điểm của CH . Chứng minh BN vuông góc với DN . Câu 12: (1,5 điểm). Cho tam giác MNP cân tại M ( ) . Gọi D là giao điểm các đường phân giác trong của tam giác MNP . Biết DM = cm , DN = 3 cm . Tính độ dài đoạn MN . ---------- HẾT--------- Họ và tên thí sinh : .Số báo danh : Giám thị 1 : Ký tên : . Giám thị 2 : Ký tên : . (Thí sinh không được sử dụng máy tính )

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.