TAILIEUCHUNG - Đề tài "The Erd˝os-Szemer´edi problem on sum set and product set"

The basic theme of this paper is the fact that if A is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd˝s-Szemer´di [E-S]. (see also [El], [T], o e and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set A + A small and then deriving that the product set AA is large (using Freiman’s structure theorem) (cf. [N-T], [Na3]). We follow the. | Annals of Mathematics The Erd os-Szemer edi problem on sum set and product set By Mei-Chu Chang Annals of Mathematics 157 2003 939 957 The Erdos-Szemeredi problem on sum set and product set By Mei-Chu Chang Summary The basic theme of this paper is the fact that if A is a finite set of integers then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erdos-Szemeredi E-S . see also El T and K-T for related aspects. Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set A A small and then deriving that the product set AA is large using Freiman s structure theorem cf. N-T Na3 . We follow the reverse route and prove that if IAA c A then A A c A 2 see Theorem 1 . A quantitative version of this phenomenon combined with the Pliinnecke type of inequality due to Ruzsa permit us to settle completely a related conjecture in E-S on the growth in k. If g k min A 1 A 1 over all sets A c z of cardinality A k and where A 1 respectively A 1 refers to the simple sum resp. product of elements of A. See . It was conjectured in E-S that g k grows faster than any power of k for k TO. Wp will Ỉ1ĨY1VÍ hnm thnt In ritỉA r -j Ợnt . mí1 whlr h is I Im mnin V V e w Hl pro v e neie biia b in g my Inln k see J- neoreiii J w inc 11 is b lie maul result of this paper. Introduction Let A B be finite sets of an abelian group. The sum set of A B is A B a b a G A b G B . We denote by hA A A h fold the h-fold sum of A. Partially supported by NSA. 940 MEI-CHU CHANG Similarly we can define the product set of A B and ft-fold product of A. AB ab I a G A b G B Ah A A h fold . If B b a singleton we denote AB by b A. In 1983 Erdos and Szemeredi E-S conjectured that for subsets of integers the sum set and the product set cannot both be small. Precisely they made the following conjecture. Conjecture 1 Erdos-Szemeredi . For any e 0 and any h G N there is

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.