TAILIEUCHUNG - Báo cáo hóa học: " Weak and strong convergence theorems for relatively nonexpansive multi-valued mappings in Banach spaces"

Tuyển tập các báo cáo nghiên cứu về hóa học được đăng trên tạp chí sinh học đề tài : Weak and strong convergence theorems for relatively nonexpansive multi-valued mappings in Banach spaces | Homaeipour and Razani Fixed Point Theory and Applications 2011 2011 73 http content 2011 1 73 Fixed Point Theory and Applications a SpringerOpen Journal RESEARCH Open Access Weak and strong convergence theorems for relatively nonexpansive multi-valued mappings in Banach spaces Simin Homaeipour 1 and Abdolrahman Razani1 2 Correspondence homaeipour_s@ department of Mathematics Faculty of Science Imam Khomeini International University . Box 34149-16818 Qazvin Iran Full list of author information is available at the end of the article Springer Abstract In this paper an iterative sequence for relatively nonexpansive multi-valued mappings by using the notion of generalized projection is introduced and then weak and strong convergence theorems are proved. 2000 Mathematics Subject Classification 47H09 47H10 47J25. Keywords multi-valued mapping relatively nonexpansive fixed point iterative sequence 1 Introduction and preliminaries Let D be a nonempty closed convex subset of a real Banach space X. A single-valued mapping T D D is called nonexpansive if T x - T y x - y for all x y e D. Let N D and CB D denote the family of nonempty subsets and nonempty closed bounded subsets of D respectively. The Hausdorff metric on CB D is defined by H A1 A2 max sup d x A2 sup d y A1 x Ai y A2 for A1 A2 e CB D where d x A1 inf x - y y e A1 . The multi-valued map- ping T D CB D is called nonexpansive if H T x T y x - y for all x y e D. An element p e D is called a fixed point of T D N D respectively T D D if p e F T respectively T p p The set of fixed points of T is represented by F T . Let X be a real Banach space with dual X . We denote by J the normalized duality mapping from X to 2X defined by J x f e X xf II x 2 II ff 2 where . . denotes the generalized duality pairing. The Banach space X is strictly convex if x y 2 1 for all x y e X with x y 1 and x y. The Banach space X is uniformly convex if lim . . xn - yn 0 for any two sequences .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.