TAILIEUCHUNG - Báo cáo " GENERALIED MASON’S THEOREM "

The purpose of this paper is to give a generalization of Mason’s theorem by the Wronskian technique over fields of characteristic 0. Keywords: The Wronskian technicque, Marson’s theorem. 1. Introduction Let F be a fixed algebraically closed field of characteristic 0. Let f (z) be a polynomial non - constants which coefficients in F and let n(1/f ) be the number of distinct zeros of f . Then we have the following. Marson’s theorem. ([2]). Let a(z), b(z), c(z) be relatively prime polynomials in F and not all constants such that a + b = c. Then max {deg(a), deg(b),. | VNU. JOURNAL OF SCIENCE Mathematics - Physics. N04 - 2005 GENERALIED MASON S THEOREM Nguyen Thanh Quang Phan Duc Tuan Department of Mathematics Vinh University Abstract. The purpose of this paper is to give a generalization of Mason s theorem by the Wronskian technique over fields of characteristic 0. Keywords The Wronskian technicque Marson s theorem. 1. Introduction Let F be a fixed algebraically closed field of characteristic 0. Let f z be a polynomial non - constants which coefficients in F and let n 1 f be the number of distinct zeros of f. Then we have the following. Marson s theorem. 2 . Let a z b z c z be relatively prime polynomials in F and not all constants such that a b c. Then max deg a deg b deg c n abc -1. It is now well known that Mason s Theorem implies the following corollary. Corollary. Fermat s Theorem over polynomials . The equation xn yn zn has no solutions in non - constants and relatively prime polynomials in F if n 3. The main theorem in this paper is as following Theorem . Les fo fl fn be relatively primer polynomials and fo fl fn be linearly independent over F. If f0 fi . fn fn 1 then Á 1 1 max deg f n n I -- I 0 i n 1 jJ n n 1 2 Remark. Theorem is a generalization of Mason s theorem which was obtained for case n 1. Typeset by ẠmS-T ạX 34 Generalied Mason s Theorem 35 2. Proof of the main theorem Let x fx 0 be a rational function where f x g x are non - zero and relatively prime polynomials on F. The degree of x denoted by deg x is defined to be degf x degg x . Here the notation degf x means the degree of polynomial f x . From the properties of polynomial we have. Proposition . If 1 and 2 are the rational functions on F then 1 deg i 2 deg 1 deg 2 2 deg a deg 2 3 deg i 2 max deg 1 deg 2 . Definition . Let x 0 be a rational function on F. For every a E F we write x x a m y m E Z gi x where fi x f2 x are relatively prime polynomials and f1 a 0 g1 a 0. We call m order of at a. Proposition . If 1 2 are rational functions

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.