TAILIEUCHUNG - Đề tài " The Calabi-Yau conjectures for embedded surfaces "

In this paper we will prove the Calabi-Yau conjectures for embedded surfaces (., surfaces without self-intersection). In fact, we will prove considerably more. The heart of our argument is very general and should apply to a variety of situations, as will be more apparent once we describe the main steps of the proof later in the introduction. | Annals of Mathematics The Calabi-Yau conjectures for embedded surfaces By Tobias H. Colding and William P. Minicozzi II Annals of Mathematics 167 2008 211-243 The Calabi-Yau conjectures for embedded surfaces By Tobias H. Colding and William P. Minicozzi II 0. Introduction In this paper we will prove the Calabi-Yau conjectures for embedded surfaces . surfaces without self-intersection . In fact we will prove considerably more. The heart of our argument is very general and should apply to a variety of situations as will be more apparent once we describe the main steps of the proof later in the introduction. The Calabi-Yau conjectures about surfaces date back to the 1960s. Much work has been done on them over the past four decades. In particular examples of Jorge-Xavier from 1980 and Nadirashvili from 1996 showed that the immersed versions were false we will show here that for embedded surfaces . injective immersions they are in fact true. Their original form was given in 1965 in Ca where E. Calabi made the following two conjectures about minimal surfaces they were also promoted by S. S. Chern at the same time see page 212 of Ch Conjecture . Prove that a complete minimal hypersurface in R must be unbounded. Calabi continued It is known that there are no compact minimal submanifolds of R or of any simply connected complete Riemannian manifold with sectional curvature 0 . A more ambitious conjecture is Conjecture . A complete nonflat minimal hypersurface in R has an unbounded projection in every n 2 -dimensional flat subspace. These conjectures were revisited in S. T. Yau s 1982 problem list see problem 91 in Ya1 by which time the Jorge-Xavier paper had appeared Question . Is there any complete minimal surface in R3 which is a subset of the unit ball The authors were partially supported by NSF Grants DMS-0104453 and DMS-0104187. 212 TOBIAS H. COLDING AND WILLIAM P. MINICOZZI II This was asked by Calabi Ca . There is an example of a complete nonflat .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.