TAILIEUCHUNG - Đề tài " Dynamics of SL2(R) over moduli space in genus two "

Annals of Mathematics By Curtis T. McMullen* .Annals of Mathematics, 165 (2007), 397–456 Dynamics of SL2(R) over moduli space in genus two By Curtis T. McMullen* Abstract This paper classifies orbit closures and invariant measures for the natural action of SL2 (R) on ΩM2 , the bundle of holomorphic 1-forms over the moduli space of Riemann surfaces of genus two. Contents 1. Introduction 2. Dynamics and Lie groups 3. Riemann surfaces and holomorphic 1-forms 4. Abelian varieties with real multiplication 5. Recognizing eigenforms 6. Algebraic sums of 1-forms 7. Connected sums of 1-forms 8. Eigenforms as connected sums 9. Pairs of splittings 10. Dynamics on. | Annals of Mathematics Dynamics of SL2 R over moduli space in genus two By Curtis T. McMullen Annals of Mathematics 165 2007 397 456 Dynamics of SL2 R over moduli space in genus two By Curtis T. McMullen Abstract This paper classifies orbit closures and invariant measures for the natural action of SL2 R on dM2. the bundle of holomorphic 1-forms over the moduli space of Riemann surfaces of genus two. Contents 1. Introduction 2. Dynamics and Lie groups 3. Riemann surfaces and holomorphic 1-forms 4. Abelian varieties with real multiplication 5. Recognizing eigenforms 6. Algebraic sums of 1-forms 7. Connected sums of 1-forms 8. Eigenforms as connected sums 9. Pairs of splittings 10. Dynamics on QM2 2 11. Dynamics on QM2 1 1 12. Dynamics on QEp 1. Introduction Let Mg denote the moduli space of Riemann surfaces of genus g. By Teichmuller theory every holomorphic 1-form ư z dz on a surface X E Mg generates a complex geodesic f H2 Mg isometrically immersed for the Teichmuuller metric. Research partially supported by the NSF. 398 CURTIS T. MCMULLEN In this paper we will show Theorem . Let f H2 M2 be a complex geodesic generated by a holomorphic 1-form. Then f H2 is either an isometrically immersed algebraic curve a Hilbert modular surface or the full space M2. In particular f H2 is always an algebraic subvariety of M2. Raghunathan s conjectures. For comparison consider a finite volume hyperbolic manifold M in place of Mg. While the closure of a geodesic line in M can be rather wild the closure of a geodesic plane f H2 M Hra T is always an immersed submanifold. Indeed the image of f can be lifted to an orbit of U SL2 R on the frame bundle FM G r G SO n 1 . Raghunathan s conjectures proved by Ratner then imply that Ux Hx c G r for some closed subgroup H c G meeting xTx-1 in a lattice. Projecting back to M one finds that f H2 c M is an immersed hyperbolic fc-manifold with 2 k n Sh . The study of complex geodesics in Mg is similarly related to the dynamics of SL2 R on the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.