TAILIEUCHUNG - Đề tài " A preparation theorem for codimension-one foliations "

Dedicated to C´sar Camacho for his 60th birthday e Abstract After gluing foliated complex manifolds, we derive a preparation-like theorem for singularities of codimension-one foliations and planar vector fields (in the real or complex setting). Without computation, we retrieve and improve results of Levinson-Moser for functions, Dufour-Zhitomirskii for nondegenerate ˙ codimension-one foliations (proving in turn the analyticity), Str´zyna-Zoladek o˙ ´ for non degenerate planar vector fields and Bruno-Ecalle for saddle-node foliations in the plane. . | Annals of Mathematics A preparation theorem for codimension-one foliations By Frank Loray Annals of Mathematics 163 2006 709-722 A preparation theorem for codimension-one foliations By Frank LoRAy Dedicated to César Camacho for his 60th birthday Abstract After gluing foliated complex manifolds we derive a preparation-like theorem for singularities of codimension-one foliations and planar vector fields in the real or complex setting . Without computation we retrieve and improve results of Levinson-Moser for functions Dufour-Zhitomirskii for nondegenerate codimension-one foliations proving in turn the analyticity Strozyna-Zoladek for non degenerate planar vector fields and Bruno-Ecalle for saddle-node foliations in the plane. Introduction We denote by z w the variable of Cn 1 z z1 . zn for n 1. Recall that a germ of non-identically vanishing holomorphic 1-form 0 f1 z w dz1 fn z w dzn g z w dw f1 . fn g G C z w defines a codimension-1 singular foliation F regular outside the zero-set of 0 if and only if it satisfies the Frobenius integrability condition 0 A d0 0. Maybe after division of coefficients of 0 by a common factor the zero-set of 0 has codimension-2 and the foliation F extends as a regular foliation outside this sharp singular set. Our main result is Theorem 1. Let 0 and F be as above and assume that g 0 w vanishes at the order k G N at 0. Then up to analytic change of the w-coordinate w ộ z w the foliation F is also defined by a 1-form 0 P1 z w dz1 Pn z w dzn Q z w dw for w-polynomials P1 . Pn Q G C z w of degree k Q monic. The preliminary version 9 of this work was written during a visit at . Barcelona we thank Marcel Nicolau and the . for hospitality. 710 FRANK LORAY In new coordinates given by Theorem 1 the singular foliation F extends analytically along some infinite cylinder z r X C where C C u to stands for the Riemann sphere . To prove this theorem we just do the converse. Given a germ of foliation we force its endless analytic continuation

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.