TAILIEUCHUNG - Olympic toán toàn quốc - Việt nam 2000

Olympic toán toàn quốc - Việt nam 2000 sưu tầm từ internet | Toán học, Olympic toán toàn quốc - Việt nam 2000 Bài từ Tủ sách Khoa học VLOS. A1. Define a sequence of positive reals x0, x1, x2, . by x0 = b, xn+1 = �"(c - �"(c + xn)). Find all values of c such that for all b in the interval (0, c), such a sequence exists and converges to a finite limit as n tends to infinity. A2. C and C' are circles centers O and O' respectively. X and X' are points on C and C' respectively such that the lines OX and O'X' intersect. M and M' are variable points on C and C' respectively, such that "XOM = "X'O'M' (both measured clockwise). Find the locus of the midpoint of MM'. Let OM and O'M' meet at Q. Show that the circumcircle of QMM' passes through a fixed point. A3. Let p(x) = x3 + 153x2 - 111x + 38. Show that p(n) is divisible by 32000 for at least nine positive integers n less than 32000. For how many such n is it divisible? B1. Given an angle ±� such that 0 2. Show that there is no linear polynomial x + c which divides pn(x) for all n > 2. B2. Find all n > 3 such that we can find n points in space, no three collinear and no four on the same circle, such that the circles through any three points all have the same radius. B3. p(x) is a polynomial with real coefficients such that p(x2 - 1) = p(x) p(-x). What is the largest number of real roots that p(x) can have?

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.