TAILIEUCHUNG - Chương 4: Biểu diễn tín hiệu và hệ thống trong miền tần số rời rạc

Vào những năm thập kỷ 60, khi công nghệ vi xử lý phát triển chưa mạnh thì thời gian xử lý phép tóan DFT trên máy tương đối chậm, do số phép nhân phức tương đối lớn. Để tính X(k), ứng với mỗi giá trị k cần có N phép nhân và (N-1) phép cộng, vậy với N giá trị k thì cần có N2 phép nhân và N(N-1) phép cộng. | Chương 4: BIỂU DIỄN TÍN HIỆU VÀ HỆ THỐNG TRONG MIỀN TẦN SỐ RỜI RẠC KHÁI NiỆM DFT BIẾN ĐỔI FOURIER RỜI RẠC (DFT) CÁC TÍNH CHẤT DFT KHÔI PHỤC BIẾN ĐỔI Z & FT TỪ DFT BiẾN ĐỔI FOURIER NHANH (FFT) KHÁI NiỆM DFT X( ) có các hạn chế khi xử lý trên thiết bị, máy tính: Tần số liên tục Độ dài x(n) là vô hạn: n biến thiên -∞ đến ∞ Biến đổi Fourier dãy x(n): Khi xử lý X( ) trên thiết bị, máy tính cần: Rời rạc tần số -> K Độ dài x(n) hữu hạn là N: n = 0 N -1 Biến đổi Fourier của dãy có độ dài hữu hạn theo tần số rời rạc, gọi tắt là biến đổi Fourier rời rạc – DFT (Discrete Fourier Transform) DFT của x(n) có độ dài N định nghĩa: còn lại còn lại WN tuần hoàn với độ dài N: X(k) biểu diễn dưới dạng modun & argument: Trong đó: - phổ rời rạc biên độ - phổ rời rạc pha IDFT: còn lại Cặp biến đổi Fourier rời rạc: Ví dụ : Tìm DFT của dãy: Ví dụ: : a) Tìm FT của dãy x(n)=an u(n), với /a/ Biến đổi DFT của x(n): 8 0 8 16 k 4 /X(k)/ a=3/4 N=16 8 0 2 4 /X(ej )/ a=3/4 8 0 8 16 k arg[X(k)] a=3/4 N=16 8 0 2 /2 arg[X(ej )] - /2 a=3/4 a) Tuyến tính Nếu: Thì: b) Dịch vòng: Nếu: Thì: Với: gọi là dịch vòng của x(n)N đi n0 đơn vị Nếu: Chọn: Ví dụ : Cho: a) Tìm dịch tuyến tính: x(n+3), x(n-2) b)Tìm dịch vòng: x(n+3)4, x(n-2)4 x(n) n 0 1 2 3 4 3 2 1 a) n x(n-2) 0 1 2 3 4 5 4 3 2 1 n x(n+3) -3 -2 -1 0 4 3 2 1 b) x(n) n 0 1 2 3 4 3 2 1 N x(n-1)4 n 0 1 2 3 4 3 2 1 x(n+1)4 n 0 1 2 3 4 3 2 1 c) Chập vòng: Nếu: Thì: Với: Chập vòng 2 dãy x1(n) & x2(n) Nếu: Chọn: Chập vòng có tính giao hoán: Và: Dịch vòng dãy x2(-m) đi n đ/vị Ví dụ : Tìm chập vòng 2 dãy Đổi biến n->m: Xác định x2(-m)4: Chọn độ dài N: với N-1 n 0 m -3 -2 -1 0 1 2 3 4 4 3 2 1 x2(m) m 0 1 2 3 4 3 2 1 x2(-m) m -3 -2 -1 0 4 3 2 1 m 0 1 2 3 4 3 2 1 m 0 1 2 3 4 3 2 1 Xác định x2(n-m) là dịch vòng của x2(-m) đi n đơn .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.