TAILIEUCHUNG - 3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection

With Europe’s ageing fleet of nuclear reactors operating closer to their safety limits, the monitoring of such reactors through complex models has become of great interest to maintain a high level of availability and safety. | 3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection EPJ Nuclear Sci. Technol. 5 20 2019 Nuclear Sciences A. Durrant et al. published by EDP Sciences 2019 amp Technologies https epjn 2019047 Available online at https REGULAR ARTICLE 3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection Aiden Durrant Georgios Leontidis and Stefanos Kollias University of Lincoln School of Computer Science Machine Learning Group Brayford Pool Lincoln LN6 7TS UK Received 1 July 2019 Accepted 12 July 2019 Abstract. With Europe s ageing fleet of nuclear reactors operating closer to their safety limits the monitoring of such reactors through complex models has become of great interest to maintain a high level of availability and safety. Therefore we propose an extended Deep Learning framework as part of the CORTEX Horizon 2020 EU project for the unfolding of reactor transfer functions from induced neutron noise sources. The unfolding allows for the identification and localisation of reactor core perturbation sources from neutron detector readings in Pressurised Water Reactors. A 3D Convolutional Neural Network 3D-CNN and Long Short-Term Memory LSTM Recurrent Neural Network RNN have been presented each to study the signals presented in frequency and time domain respectively. The proposed approach achieves state-of-the-art results with the classification of perturbation type in the frequency domain reaching accuracy and localisation of the classified perturbation source being regressed to Mean Absolute Error MAE . 1 Introduction Machine learning ML is a data analytical process for the approximation of functions mapping a set of inputs to The early detection classification and localisation of outputs. Therefore the use of ML to approximate such anomalies within the reactors core is vital to ensure the reactor functions given limited detector readings is

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.