TAILIEUCHUNG - A hierarchical classifier for multiclass prostate histopathology image gleason grading

This paper proposes a new multiclass approach called multi-level (hierarchical) learning architecture (MLA). It addresses the binary classification tasks within the framework of a hierarchical strategy. It does so by accounting for the interaction between several classes and the domain knowledge. | Journal of ICT, 17, No. 2 (April) 2018, pp: 323–346 How to cite this paper: Albashish, D., Sahran, S., Abdullah, A., Alweshah, M., & A., Adam. (2018). A hierarchical classifier for multiclass prostate histopathology image gleason grading. Journal of Information and Communication Technology, 17 (2), 323-346. A HIERARCHICAL CLASSIFIER FOR MULTICLASS PROSTATE HISTOPATHOLOGY IMAGE GLEASON GRADING Dheeb Albashish, 2Shahnorbanun Sahran, 2Azizi Abdullah, 3 Mohammed Alweshah & 2Afzan Adam 1&3 Prince Abdullah Ben Ghazi Faculty of Information Technology Al-Balqa Applied University, 19117 Al-Salt, Jordan 1&2 Faculty of Information Science and Technology Universiti Kebangsaan Malaysia, Selangor, Malaysia 1 bashish@;shahnorbanun@; azizia@; afzan@; weshah@ ABSTRACT Automated classification of prostate histopathology images includes the identification of multiple classes, such as benign and cancerous (grades 3 & 4). To address the multiclass classification problem in prostate histopathology images, breakdown approaches are utilized, such as one-versus-one (OVO) and oneversus-all (Ovall). In these approaches, the multiclass problem is decomposed into numerous binary subtasks, which are separately addressed. However, OVALL introduces an artificial class imbalance, which degrades the classification performance, while in the case of OVO, the correlation between different classes not regarded as a multiclass problem is broken into multiple independent binary problems. This paper proposes a new multiclass approach called multi-level (hierarchical) learning architecture (MLA). It addresses the binary classification tasks within the framework of a hierarchical strategy. It does so by accounting for the interaction between several classes and the domain knowledge. The proposed approach relies on the ‘divideReceived: 2 September 2017 Accepted: 4 January 2018 323 Journal of ICT, 17, No. 2 (April) 2018, pp: 323–346 and-conquer’ .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.