TAILIEUCHUNG - Định lý điểm bất động trong không gian metric nón hình hộp chữ nhật

Bài viết trình bày việc chứng minh định lý điểm bất động của ánh xạ co trong không gian metric nón hình hộp chữ nhật với nón có phần trong không chuẩn tắc. | Định lý điểm bất động trong không gian metric nón hình hộp chữ nhật ISSN: 1859-2171 TNU Journal of Science and Technology 204(11): 53 - 57 e-ISSN: 2615-9562 ĐỊNH LÝ ĐIỂM BẤT ĐỘNG TRONG KHÔNG GIAN METRIC NÓN HÌNH HỘP CHỮ NHẬT Lê Anh Tuấn Trường Đại học Công nghiệp Hà Nội TÓM TẮT Năm 2000, Branciari đã thay thế bất đẳng thức tam giác bằng một bất đẳng thức tổng quát hơn mà ngày nay được gọi là bất đẳng thức hình hộp chữ nhật và đưa ra khái niệm về không gian metric hình hộp chữ nhật, không gian này là suy rộng của không gian metric. Năm 2009, Azam, Arshad and Beg (Azam, A., Arshad, M., Beg, I.,2009) giới thiệu không gian metric nón hình hộp chữ nhật và chứng minh một số định lý điểm bất động của ánh xạ co với nón chuẩn tắc. Trong bài báo này, chúng tôi chứng minh định lý điểm bất động của ánh xạ co trong không gian metric nón hình hộp chữ nhật với nón có phần trong không chuẩn tắc. Từ khóa: Tối ưu; Điểm bất động; Nón; Nón có phần trong; Không gian metric; Không gian metric nón; Không gian metric nón hình hộp chữ nhật Ngày nhận bài: 22/5/2019;Ngày hoàn thiện: 03/7/2019; Ngày đăng: 26/7/2019 A FIXED POINT THEOREM IN RECTANGULAR CONE METRIC SPACES Lê Anh Tuấn Ha Noi University of Industry ABSTRACT In 2000, Branciari replaced the triangle inequality by a more general one which today is known as the rectangular inequality and introduced the notion of generalized metric space or rectangular metric space. In 2009, Azam, Arshad and Beg (Azam, A., Arshad, M., Beg, I., 2009) introduced the concept of rectangular cone metric space and proved fixed point results for normal cone. In this paper, we establish a fixed point theorem for contraction mapping in rectangular cone metric spaces via solid cone and non-normal cone. Key words: Optimization; Fixed point; Cone; Solid cone; Metric spaces; Cone metric spaces; Rectangular cone metric spaces. Received: 22/5/2019; Revised: 03/7/2019; Published: .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.