TAILIEUCHUNG - Product sub-vector quantization for feature indexing

This work addresses the problem of feature indexing to significantly accelerate the matching process which is commonly known as a cumbersome task in many computer vision applications. To this aim, we propose to perform product sub-vector quantization (PSVQ) to create finer representation of underlying data while still maintaining reasonable memory allocation. | Journal of Computer Science and Cybernetics 2019 69-83 DOI 1813-9663 35 1 13442 PRODUCT SUB-VECTOR QUANTIZATION FOR FEATURE INDEXING THE-ANH PHAM1 DINH-NGHIEP LE1 THI-LAN-PHUONG NGUYEN2 1Hong Duc University 2 Thai Nguyen University Lao Cai Campus phamtheanh@ Crossref Similarity Check Abstract. This work addresses the problem of feature indexing to significantly accelerate the matching process which is commonly known as a cumbersome task in many computer vision applications. To this aim we propose to perform product sub-vector quantization PSVQ to create finer representation of underlying data while still maintaining reasonable memory allocation. In addition the quantized data can be jointly used with a clustering tree to perform approximate nearest search very efficiently. Experimental results demonstrate the superiority of the proposed method for different datasets in comparison with other methods. Keywords. Product quantization Hierarchical clustering tree Approximate nearest search. 1. INTRODUCTION Feature indexing has been known as an important technique which allows fast retrieval and matching of visual objects in computer vision filed. The most active application of feature indexing is probably concerned with fast approximate nearest neighbor ANN search. In the literature popular approaches for this problem can be listed as space partitioning methods typically KD-tree 5 and randomized KD-trees 26 or LM-tree 24 hashing methods such as LSH 8 Kernelized LSH 12 hierarchical clustering methods such as vocabulary K-means tree 19 POC-trees 22 . Recently product quantization PQ 9 has been actively studied for its applications in fast approximate nearest neighbor search ANN and feature indexing. Different variants of PQ technique have been presented to optimize the quantization stage such as optimized PQ 6 20 locally optimized PQ 10 or distribution sensitive PQ DSPQ 13 . PQ can be also combined with hierarchical clustering idea to boost the

TÀI LIỆU MỚI ĐĂNG
8    164    3    25-12-2024
337    145    2    25-12-2024
6    124    1    25-12-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.