TAILIEUCHUNG - Online blind separation of non stationary signals

This paper addresses the problem of blind separation of non stationary signals. We introduce an online separating algorithm for estimation of independent source signals using the assumption of non-stationarity of sources. As a separating model, we apply a self-organizing neural network with lateral connections, and define a contrast function based on correlation of the network outputs. A separating algorithm for adaptation of the network weights is derived using the state-space model of the network dynamics, and the extended Kalman filter. | Yugoslav Journal of Operations Research 15 (2005), Number 1, 79-95 ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Slavica TODOROVIĆ-ZARKULA EI “Professional Electronics”, Niš, bssmtod@ Branimir TODOROVIĆ, Miomir STANKOVIĆ Faculty of Occupational Safety, Niš {todor,mstan}@ Presented at XXX Yugoslav Simposium on Operations Research Received: January 2004 / Accepted: January 2005 Abstract: This paper addresses the problem of blind separation of non-stationary signals. We introduce an on-line separating algorithm for estimation of independent source signals using the assumption of non-stationarity of sources. As a separating model, we apply a self-organizing neural network with lateral connections, and define a contrast function based on correlation of the network outputs. A separating algorithm for adaptation of the network weights is derived using the state-space model of the network dynamics, and the extended Kalman filter. Simulation results obtained in blind separation of artificial and real-world signals from their artificial mixtures have shown that separating algorithm based on the extended Kalman filter outperforms stochastic gradient based algorithm both in convergence speed and estimation accuracy. Keywords: Blind source separation, decorrelaton, neural networks, extended Kalman filter. 1. INTRODUCTION Blind separation of sources refers to the problem of recovering source signals from their instantaneous mixtures using only the observed mixtures. The separation is called blind, because it assumes very weak assumptions on source signals and the mixing process. The key assumption is the statistical independence of source signals. A goal is to obtain output signals that are as independent as possible using the observed mixture signals. 80 S. Todorović-Zarkula, B. Todorović, M. Stanković / On-Line Blind Separation In the last few years, the problem of blind source separation has received considerable attention. Since .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.