TAILIEUCHUNG - Ebook Engineering mechanics - Dynamics (13th edition): Part 2

(BQ) The book "Engineering mechanics - Dynamics" technologically advanced online tutorial and homework system available, can be packaged with this edition. This book is ideal for civil and mechanical engineering professionals. | Chapter Tractors and other heavy equipment can be subjected to severe loadings due to dynamic loadings as they accelerate. In this chapter we will show how to determine these loadings for planar motion. Planar Kinetics of a Rigid Body Force and Acceleration CHAPTER OBJECTIVES B To introduce the methods used to determine the mass moment of inertia of a body. a To develop the planar kinetic equations of motion for a symmetric rigid body. a To discuss applications of these equations to bodies undergoing translation rotation about a fixed axis and general plane motion. Mass Moment of Inertia Since a body has a definite size and shape an applied nonconcurrent force system can cause the body to both translate and translational aspects of the motion were studied in Chapter 13 and are governed by the equation F ma. Il will be shown in the next section that the rotational aspects caused by a moment governed by an equal ion of the form M a. The symbol in this equation is termed the mass moment of inertia. By comparison the moment of inertia is a measure of the resistance of a body to angular acceleration M la in the same way that mass is a measure of the body s resistance to acceleration F ma . 396 Chapter 17 Planar Kinetics of a Rigid Body Force and Acceleration The flywheel on I he engine of this tractor has a large moment of inertia about its axis of rotation. Once it is set into motion it will be difficult to slop and this in turn will prevent the engine from stalling and instead will allow it to maintain a constant power. 17 Fig. 17-1 We define the moment of inertia as the integral of the second moment about an axis of all the elements of mass Im which compose the body. For example the body s moment of inertia about the z axis in Fig. 17-1 is 17-1 Here the moment arm r is the perpendicular distance from the z axis to the arbitrary clement dm. Since the formulation involves r. the value of I is different for each axis about which it is computed. In

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.