TAILIEUCHUNG - Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions

We study regularity properties for the solution of homogeneous boundary value problems for the anisotropic hyperbolic heat equation in the case of infinitely differentiable coefficients but irregular distributions as internal heat sources. | Turk J Math (2017) 41: 461 – 482 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Regularity of solutions of the anisotropic hyperbolic heat equation with nonregular heat sources and homogeneous boundary conditions ´ Juan Antonio LOPEZ MOLINA∗, Macarena TRUJILLO Department of Applied Mathematics, Polytechnic University of Valencia, Valencia, Spain • Received: Accepted/Published Online: • Final Version: Abstract: We study regularity properties for the solution of homogeneous boundary value problems for the anisotropic hyperbolic heat equation in the case of infinitely differentiable coefficients but irregular distributions as internal heat sources. Key words: Anisotropic hyperbolic heat equation, Sobolev spaces, integral transforms of vector valued distributions 1. Introduction and physical motivation The hyperbolic heat conduction equation is a fundamental tool in many modern industrial applications such as microelectronics and the processing of materials by irradiation with a laser beam of high intensity and very short application times (see [4, 6, 12, 13] for instance). Usually the mathematical formulation of these problems leads to the study of boundary value problems with data given by irregular distributions such as Heaviside’s function or Dirac’s δ distribution. Real industrial materials frequently are neither isotropic (see [16] for instance for some concrete examples) nor homogeneous. Assuming the density ρ and the specific heat c to be constant in order to avoid more complications, the hyperbolic heat equation in the open set Ω occupied by the body is (see [2]) ( ) 3 3 ∑ ∂ ∑ ∂T ∂T ∂2T − khj (x) (x, t) + ρ c (x, t) + τ (x, t) = ∂ xh j=1 ∂ xj ∂t ∂t2 h=1 ( ) ∂S = ρ S(x, t) + τ (x, t) , ∂t (1) where T (x, t) is the temperature in the point x at the instant t, (khj (x)) is the symmetric thermal conductivity tensor of the material, τ is .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.