TAILIEUCHUNG - Asymptotic analysis of the 2-dimensional soliton solutions for the Nizhnik–Veselov–Novikov equations

In this paper we present a direct approach to determining a class of solutions, the asymptotic analysis of the dromion solutions, and their asymptotic properties of the Nizhnik–Veselov–Novikov equations by means of Pfaffians. The form of the solution obtained allows a detailed asymptotic analysis of the dromion solutions and compact expression for the phase shifts and changes of amplitude as a result of interaction of the dromions to be determined. | Turkish Journal of Mathematics Research Article Turk J Math (2014) 38: 278 – 296 ¨ ITAK ˙ c TUB ⃝ doi: Asymptotic analysis of the 2-dimensional soliton solutions for the Nizhnik–Veselov–Novikov equations ∗ ¨ Metin UNAL Department of Mathematics, U¸sak University, U¸sak, Turkey Received: • Accepted: • Published Online: • Printed: Abstract: In this paper we present a direct approach to determining a class of solutions, the asymptotic analysis of the dromion solutions, and their asymptotic properties of the Nizhnik–Veselov–Novikov equations by means of Pfaffians. The form of the solution obtained allows a detailed asymptotic analysis of the dromion solutions and compact expression for the phase shifts and changes of amplitude as a result of interaction of the dromions to be determined. Key words: Soliton, dromion 1. Introduction In recent years the generalizations of integrable (1+1)-dimensional equations to (2+1) dimensions have been widely studied. The integrable generalization of the nonlinear Schr¨odinger (NLS) equation is the Davey– Stewartson (DS) equations [5]. The generalization of the Korteweg–de-Vries (KdV) equation has 2 possibilities, which are the Kadometsev–Petviashvili (KP) equations [11] and the Nizhnik–Veselov–Novikov (NVN) equations [14]. The NVN equations are Ut = Uxxx + Uyyy + 3(Φxx U )x + 3(Φyy U )y , (1) U = Φxy . (2) These generalizations, the DS and NVN equations, have 2-dimensional localized hump solutions that decay exponentially in all directions, which are called 2-dimensional solitons or dromions. The KP equation does not have such solutions. The word dromion comes from the Greek word dromos, which means track, and it has been given [6] to these objects because they are located at the intersection of plane waves, which can be thought to form tracks. These 2-dimensional solitons, like the well-known solutions in (1 + 1) .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.