TAILIEUCHUNG - Edge detection

Origin of edges, characterizing edges, image gradient, finite difference filters, effects of noise,. As the main contents of the lecture "Edge detection". Each of your content and references for additional lectures will serve the needs of learning and research. | Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded in the edges More compact than pixels Ideal: artist’s line drawing (but artist is also using object-level knowledge) Source: D. Lowe Origin of edges Edges are caused by a variety of factors: depth discontinuity surface color discontinuity illumination discontinuity surface normal discontinuity Source: Steve Seitz Characterizing edges An edge is a place of rapid change in the image intensity function image intensity function (along horizontal scanline) first derivative edges correspond to extrema of derivative The gradient points in the direction of most rapid increase in intensity Image gradient The gradient of an image: The gradient direction is given by Source: Steve Seitz The edge strength is given by the gradient magnitude How does this direction relate to the direction of the edge? give definition of partial derivative: lim h->0 [f(x+h,y) – f(x,y)]/h Differentiation and convolution Recall, for 2D function, f(x,y): This is linear and shift invariant, so must be the result of a convolution. We could approximate this as (which is obviously a convolution) -1 1 Source: D. Forsyth, D. Lowe Finite difference filters Other approximations of derivative filters exist: Source: K. Grauman Finite differences: example Which one is the gradient in the x-direction (resp. y-direction)? Effects of noise Consider a single row or column of the image Plotting intensity as a function of position gives a signal Where is the edge? Source: S. Seitz How to fix? Effects of noise Finite difference filters respond strongly to noise Image noise results in pixels that look very different from their neighbors Generally, the larger the noise the stronger the response What is to be done? Smoothing the image should help, by forcing pixels different from their neighbors (=noise pixels?) to look more like .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.