Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình phân tích cấu tạo lý thuyết trường và phương thức sử dụng toán tử divergence p5

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Giải các b i toán (7.8.4) v (7.8.5) tìm các h m v(x, t) v w(x, t) sau đó thế v o công thức (7.8.3) suy ra nghiệm của b i toán HH1. Định lý Cho các h m f ∈ C(H, 3) ∩ C1(D, 3), g ∈ C2(D, 3), h ∈ C1(D, 3) v.Định lý Cho f ∈ C(H, 3)∩ B(D, 3), g ∈ C(D, 3)∩ B(D, 3), h ∈ C(3+, 3)∩ B(3+, 3) thoả m n f(0, t) = 0 v g(0) = 0 B i toán SP1 có nghiệm duy nhất v ổn định xác định theo. | Chương 7. Phương Trình Truyền Són Bài toán SH1b Cho các miền D 3 H D X 3 và hàm p e C 3 3 Tìm hàm u e C H 3 thoả mãn phương trình truyền sóng d2u 2 d2u T7T với x t e Ho dt2 dx2 điều kiện ban đầu u x 0 0 u x 0 0 dt và điều kiện biên u 0 t p t Kiểm tra trực tiếp hàm xx u x t n t - - p t - - aa là nghiệm của bài toán SH1b. 7.6.2 Bài toán SH1 Cho các miền D 3 H D X 3 các hàm f e C H 3 g h e C D 3 p e C 3 3 Tìm hàm u e C H 3 thoả mãn phương trình truyền sóng d 2u 2d2u -2- a f x t với x t e H dt2 dx2 điều kiện ban đầu u x 0 g x u x 0 h x dt và điều kiện biên u 0 t p t Tìm nghiệm của bài toán SH1 dưới dạng u x t ua x t ub x t trong đó ua x t là nghiệm của bài toán SH1a. Kết hợp các công thức 7.6.1 và 7.6.2 suy ra công thức sau đây. x at x at t x aT A u x t i Ế íg1 íM ídT íf1 t-T d 2a ơt A A Jn v _ x-at x-at 0 x-aT n t - p t - x 7.6.3 a a Đinh lý Cho các hàm f e C H 3 g e C2 D 3 h e C1 D 3 và p e C2 3 3 thoả g 0 0 h 0 0 và f 0 t 0 Bài toán SH1 có nghiệm duy nhất và ổn định xác định theo công thức 7.6.3 với f15 g1 và h1 tương ứng là kéo dài lẻ của các hàm f g và h lên toàn 3. ương 7. Phương Trình Truyền Sóng 32u 32u Ví du Giải bài toán 4 2xt với x t e 3 x3 3t2 3x2 u x 0 sinx du x 0 2x u 0 t sint Do các hàm f g và h là hàm lẻ nên các hàm kéo dài lẻ f1 f g1 g và h1 h. Thay vào công thức 7.6.3 chúng ta có u x t 1 ĩt Jsin ạlỊ J23d3 JdT J2 t -T ặdặ n t - x sin t - x 4 Vdt x-2t x-2t 0 x-2t 22 sinxcos2t 2xt 1 xt3 n t - x sin t - x với x t e 3 x 3 Nhân xét Phương pháp trên có thể sử dung để giải các bài toán giả Cauchy khác. Đ7. Bài toán hỗn hợp thuần nhất Bài toán HH1a Cho các miền D 0 l H D x 0 T và các hàm g h e C D 3 Tìm hàm u e C H 3 thoả mãn phương trình truyền sóng d2u d2u O a2 d2 với x t H0 7.7.1 3t2 3x2 điều kiện ban đầu u x 0 g x x 0 h x 7.7.2 ơt và điều kiện biên u 0 t 0 u l t 0 7.7.3 Bài toán HH1a được giải bằng phương pháp tách biến mà nội dung của nó như sau Tìm nghiệm của bài toán HH1a dạng tách biến u x t X x T t Đạo hàm u x t hai lần theo x theo t sau đó thế vào .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.