Đang chuẩn bị liên kết để tải về tài liệu:
Numerical_Methods for Nonlinear Variable Problems Episode 4

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'numerical_methods for nonlinear variable problems episode 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 6. Time-Dependent Flow of a Bingham Fluid in a Cylindrical Pipe 107 6.3. On the asymptotic behavior of the discrete solution We still assume that f 6 L2 Q . To approximate 6.1 we proceed as follows Assuming that Q is a polygonal domain we use the same approximation with regard to the space variables as in Chapter II Sec. 6 i.e. by means of piecewise linear finite elements see Chapter II Sec. 6 . Hence we have ah uh vh a uh vh Vuh vheVh h Vh VvheVh and from the formula of Chapter II Sec. 7 we can also take uh vh h uh vh V uh vheVh. Then we approximate 6.1 by the implicit scheme 5.2 and obtain Uh A Uh vh - Ã 1Ì f Vu 1 V i - u h 1 dx af ph ỵ zxr - gj unh i fh vh - unh l YvheVh unh leVh n 0 1 2 . u uOh. 6.14 We assume that uOh e vh V h and lim uOh Mo strongly in L2 Q . 6.15 h- O Similarly we assume that f is approximated by fffi in such a way that Vh can be computed easily and lim fh f strongly in L2 Q . 6.16 h o Theorem 6.3. Let f Pg. If 6.15 and 6.16 hold then if h is sufficiently small we have u 0 for n large enough. Proof. As in the proof of Theorem 6.2 taking vh 0 and vh 2u h 1 in 6.14 we obtain i ------- uJJ 1 j g f I VuJ 112 dx g f I Vuâ 11 dx f fidf dx V n 0 At Jil Jn 2ij 6.17 using the Schwarz inequality in L2 íĩ it follows from 6.17 that l l K1 4K112 .gp - lÁDK1 0 Vn 0. 6.18 Since fh f strongly in L2 ii we have gP fh 0 for h sufficiently small 6.19 108 III On the Approximation of Parabolic Variational Inequalities From 6.18 6.19 it then follows that u h 0 u h 0 for n n0 if h is small enough. 6.20 Assume that Uh 0 V n then 6.18 implies Mii gff - I.ÁI 0 Vn 0. 6.21 We define 7 by yh gf I fh I then yh 0 for h small enough and lim yh 7 gfi I f I. 6.22 From 6.21 it follows that X 1I tM 1 AoM At w -A- V I 0. -0 pj which implies that l i 1 Ẫoụ At u -A-V 6.23 Since yh 0 for h small enough 6.23 is impossible for n large enough. More precisely we shall have u 0 if - - 1 AoMAt - K -H 0 M A v which implies t Log l UXlX l If h is small enough then Uj 0 if n T - 7- 7 Log l

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.