Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'biến đổi và đổi biến nâng cao tích phân hửu tỉ', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Bài 3. Biến đỗi và đỗi biến nâng cao tích phân hàm phân thức hữu tỉ BÀI 3. BIẾN ĐÔI VÀ ĐÔI BIẾN NÂNG CAO TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ I. DẠNG 1 TÁCH CÁC M ÃU SỐ CHỨA CÁC NHÂN T Ử ĐỒNG BẬC Các bài tập mẫu minh họa A1 í x - 2 x 5 1 x 5 - x - 2K 1 ff 1 1 V 1 . x - 2 dx II---------- I dx In - - 7 x - 2 x 5 7 V x - 5 x 5 7 x 5 c A _r dx _1f x 4 - x-5 2 J x-5 x 2 x 4 9 J x-5 x 2 x 4 1í 9 1 1 x - 5 x 2 - x 2 x 4 1 x 2 - x - 5 1 x 4 - x 2 H Zx dx - I dx 63 x - 5 x 2 18 x 2 x 4 - f 1 63 R x - 5 1 V 1 f 1 I dx I x 2 18 V x 4 --- - I dx -7 In x 2 63 x-5 x 2 In 18 x 4 x 2 c II. DẠNG 2 TÁCH CÁC M ÃU S Ố CHỨA CÁC NHÂN T Ử KHÔNG ĐỒNG BẬC 1. Các bài tập mẫu minh họa B1 __ í dx x3 - 3x dx J x x2 - 3 1 r x2 - x2 - 3 d 1 f r xdx dx 3 J x x2 - 3 3 Ụ x2 - 3 -J T 1 r 2j-d x2 3 2 J 3 x2 x2 3 pdx 1 f 1 I 2 A 117 lnlx2 J x _ 3 V 2 3 - ln x I c y In 6 2 x 3 c B r dx f dx 1 rx4 - x4 -10 d 1 f r xdx dx 2 x7 - 10x3 x3 x4 -10 10 x3 x4 -10 x ĨÕ Ụ x4-10 17 Chương II. Nguyên hàm và tích phân Trần Phương 10 I í V 1 d x2 x2 2 -10 fdx í x3 1 20 Lln 710 x2 71Õ 1 ì ZT c x 7 7 V 2 x 2. Các bài tập dành cho bạn đọc tự giải B1 r dx J x3 5x b2 í 7 dx - 7x4 B3 í dx x11 - 8x5 B4 r dx J x6 9x B5 r dx J x7 13x B6 íx3 6x2 19x 22 B7 íx3 -3x2 14x- 12 B8 íx4 4x3 6x2 7x 4 III. DẠNG 3 KĨ THUẬT NHẢY TẦNG LẦU KHI M ÃU S Ố LÀ HÀM ĐA THỨC BẬC 4 _ c dx f dx 1 f x2 1 - x2 - 1 1 C1 - dx In 1 ụ -1 J x2 -1 x2 1 2 x2 -1 x2 1 4 x -1 x 1 1 arctgx c n _ Ị xdx _ 1 f d x2 2-J 1 -1 2J x2 -1 x2 1 1 x2 -1 -- - ì d x2 ịln x2 17 4 x2 -1 x2 1 1 4 c C3 f x2dx 1 f x2 1 x2 -1 1 f 1 1 ì X ----r- dx I -1 ----I dx J x4 - 1 2 J x2 1 x2 -1 2 JV x2 -1 x2 17 1 dx 1 dx 1 x - 1 _ -Ị - ln 72 Ị 2 J x2 - 1 2 J x2 1 4 x 1 1 arctgx c C4 x3dx x4 -1 d x4 -1 x4 -1 -ịlnlx4 4 -1 c c x4dx C5- J5r x4 - 1 4 dx X x C1 x4 -1 x4 -1 1 x ln 4 x -1 1 7 - - arctgx c x 1 2 C6 _ r xdx 1 r d x2 _ J ự 1 2 J . - I T arctg x2 c x4 1 x2 2 1 2 8 C r x3dx 1 rd x4 1 7 J x4 r 4 J x4 1 Ậlnlx4 4 11 c C O - ỉ x2 -1 J x4 1 1 dx í x x 2 x _ -Uln x 1 2-W2 2 C9 1 7T dx í--x x4 1 s 2