Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài giảng "Điều khiển số - Chương 4: Đặc tính thời gian của hệ thống điều khiển số" cung cấp cho người học các kiến thức: Khái niệm chung, xác định đặc tính thời gian của một khâu bằng phương pháp đệ quy, mô phỏng hệ thống điều khiển số,. nội dung chi tiết. | Bài giảng Điều khiển số - Chương 4: Đặc tính thời gian của hệ thống điều khiển số C.4: ĐẶC TÍNH THỜI GIAN CỦA HỆ THỐNG ĐIỀU KHIỂN SỐ CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 KHÁI NIỆM CHUNG X(z) Y(z) G(z) x(kT) y(kT) Cho x(kT) và G(z). Xác định y(kT) x(kT ) ⇒ X ( z ) = Z { x(kT )} Y ( z) G( z) = ⇒ Y ( z ) = X ( z ).G ( z ) X ( z) ⇒ y (kT ) = Z −1 {Y ( z )} CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ 1 − e − aT • Cho: x(kT ) = 1(kT ) G( z) = z − e − aT z x(kT ) = 1(kT ) ⇒ X ( z ) = Z {1(kT )} = z −1 z 1 − e − aT Y ( z ) = X ( z ).G ( z ) = ⋅ z − 1 z − e − aT ⎧ z 1 − e − aT ⎫ • Tra bảng: y (kT ) = Z {Y ( z )} = Z ⎨ −1 −1 ⋅ − aT ⎬ ⎩ z −1 z − e ⎭ y (kT ) = 1 − e − akT CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 x(kT) 0.8 0.6 y(kT) 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 time [s] CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.2. XÁC ĐỊNH ĐẶC TÍNH THỜI GIAN CỦA MỘT KHÂU BẰNG PHƯƠNG PHÁP ĐỆ QUY Y ( z) 2z −1 Cho hàm truyền đạt của khâu: G( z) = = 2 X ( z) 2z − z − 1 và tín hiệu đầu vào x(kT) với k=0, 1, 2, , ∞. Xây dựng biểu thức xác định y(kT) 1. Nhân chéo: 2 z 2Y ( z ) − zY ( z ) − Y ( z ) = 2 zX ( z ) − X ( z ) 2. Nhân hai vế cho z-n với n là bậc cao nhất của z: 2Y ( z ) − z −1Y ( z ) − z −2Y ( z ) = 2 z −1 X ( z ) − z −2 X ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: CuuDuongThanCong.com https://fb.com/tailieudientucntt f (kT ) ⇒ Z { f (kT )} = F ( z ) ⇒ Z −1{ F ( z )} = f (kT ) ⇒ Z { f [ (k − 1)T ]} = z F ( z ) ⇒ Z −1 −1 {z −1 F ( z )} = f [ (k − 1)T ] CuuDuongThanCong.com https://fb.com/tailieudientucntt 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {2Y ( z ) − z −1Y ( z ) − z −2Y ( z )} = Z −1 {2 z −1 X ( z ) − z −2 X ( z )} 2 y (kT ) − y[(k − 1)T ] − y[(k − 2)T ] = 2 x[(k − 1)T ] − x[(k − 2)T ] 4. Xác định y(kT). Đơn giản cách viết: y (kT ) = 0.5 .