Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: " Automatic Verb Classification Using Distributions of Grammatical Features"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We apply machine learning techniques to classify automatically a set of verbs into lexical semantic classes, based on distributional approximations of diatheses, extracted from a very large annotated corpus. Distributions of four grammatical features are sufficient to reduce error rate by 50% over chance. We conclude that corpus data is a usable repository of verb class information, and that corpus-driven extraction of grammatical features is a promising methodology for automatic lexical acquisition. . | Proceedings of EACL 99 Automatic Verb Classification Using Distributions of Grammatical Features Suzanne Stevenson Paola Merlo Dept of Computer Science and Center for Cognitive Science RuCCS Rutgers University CoRE Building Busch Campus New Brunswick NJ 08903 U.S.A. LATL-Department of Linguistics University of Geneva 2 rue de Candolle 1211 Geneve 4 Switzerland merloOlettres.unige.ch suzanneSruccs.rutgers.edu Abstract We apply machine learning techniques to classify automatically a set of verbs into lexical semantic classes based on distributional approximations of diatheses extracted from a very large annotated corpus. Distributions of four grammatical features are sufficient to reduce error rate by 50 over chance. We conclude that corpus data is a usable repository of verb class information and that corpus-driven extraction of grammatical features is a promising methodology for automatic lexical acquisition. 1 Introduction Recent years have witnessed a shift in grammar development methodology from crafting large grammars to annotation of corpora. Correspondingly there has been a change from developing rule-based parsers to developing statistical methods for inducing grammatical knowledge from annotated corpus data. The shift has mostly occurred because building wide-coverage grammars is time-consuming error prone and difficult. The same can be said for crafting the rich lexical representations that are a central component of linguistic knowledge and research in automatic lexical acquisition has sought to address this Dorr and Jones 1996 Dorr 1997 among others . Yet there have been few attempts to learn finegrained lexical classifications from the statistical analysis of distributional data analogously to the induction of syntactic knowledge though see e.g. Brent 1993 Klavans and Chodorow 1992 Resnik 1992 . In this paper we propose such an approach for the automatic classification of verbs into lexical semantic classes.1 We can express the issues raised by this .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.