Đang chuẩn bị liên kết để tải về tài liệu:
ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tài liệu tham khảo về ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. . | Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 2. Cho biểu thức: . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): và đường thẳng (d): . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: Câu 3 (2,5 điểm) 1. Cho phương trình: với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm thỏa mãn điều kiện: . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.