Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Hệ tiếp nhận các khẳng định của các quyết định đúng. Khi hệ tạo ra một quyết định không đúng, hệ sẽ đưa ra các luật hay quan hệ đúng mà hệ đã sử dụng. Hình thức học vẹt nhằm cho phép chuyên gia cung cấp tri thức theo kiểu tương tác. Thay vì đưa ra một luật cụ thể cần áp dụng vào tình huống cho trước, hệ thống sẽ được cung cấp bằng các chỉ dẫn tổng quát. | CHƯƠNG 4: MỘT SỐ VÍ DỤ VỀ MÁY HỌC NHẬP MÔN TRÍ TUỆ NHÂN TẠO 1. GIỚI THIỆU Một số phương pháp máy học để tiếp thu tri thức hay tạo ra tri thức Học vẹt Học cách đề xuất Học bằng cách thu thập các trường hợp Học bằng cách xây dựng cây định danh Học không giám giám sát và bài tóm gom nhóm dữ liệu Học giám sát và bài toán phân lớp dữ liệu 1. GIỚI THIỆU (tt) Học vẹt Hệ tiếp nhận các khẳng định của các quyết định đúng. Khi hệ tạo ra một quyết định không đúng, hệ sẽ đưa ra các luật hay quan hệ đúng mà hệ đã sử dụng. Hình thức học vẹt nhằm cho phép chuyên gia cung cấp tri thức theo kiểu tương tác. Học bằng cách chỉ dẫn Thay vì đưa ra một luật cụ thể cần áp dụng vào tình huống cho trước, hệ thống sẽ được cung cấp bằng các chỉ dẫn tổng quát. Ví dụ: "gas hầu như bị thoát ra từ van thay vì thoát ra từ ống dẫn". Hệ thống phải tự mình đề ra cách biến đổi từ trừu tượng đến các luật khả dụng. 1. GIỚI THIỆU (tt) Học bằng qui nạp Hệ thống được cung cấp một tập các ví dụ và kết luận được rút | CHƯƠNG 4: MỘT SỐ VÍ DỤ VỀ MÁY HỌC NHẬP MÔN TRÍ TUỆ NHÂN TẠO 1. GIỚI THIỆU Một số phương pháp máy học để tiếp thu tri thức hay tạo ra tri thức Học vẹt Học cách đề xuất Học bằng cách thu thập các trường hợp Học bằng cách xây dựng cây định danh Học không giám giám sát và bài tóm gom nhóm dữ liệu Học giám sát và bài toán phân lớp dữ liệu 1. GIỚI THIỆU (tt) Học vẹt Hệ tiếp nhận các khẳng định của các quyết định đúng. Khi hệ tạo ra một quyết định không đúng, hệ sẽ đưa ra các luật hay quan hệ đúng mà hệ đã sử dụng. Hình thức học vẹt nhằm cho phép chuyên gia cung cấp tri thức theo kiểu tương tác. Học bằng cách chỉ dẫn Thay vì đưa ra một luật cụ thể cần áp dụng vào tình huống cho trước, hệ thống sẽ được cung cấp bằng các chỉ dẫn tổng quát. Ví dụ: "gas hầu như bị thoát ra từ van thay vì thoát ra từ ống dẫn". Hệ thống phải tự mình đề ra cách biến đổi từ trừu tượng đến các luật khả dụng. 1. GIỚI THIỆU (tt) Học bằng qui nạp Hệ thống được cung cấp một tập các ví dụ và kết luận được rút ra từ từng ví dụ. Hệ liên tục lọc các luật và quan hệ nhằm xử lý từng ví dụ mới. Học bằng tương tự Hệ thống được cung cấp đáp ứng đúng cho các tác vụ tương tự nhưng không giống nhau. Hệ thống cần làm thích ứng đáp ứng trước đó nhằm tạo ra một luật mới có khả năng áp dụng cho tình huống mới. 1. GIỚI THIỆU (tt) Học dựa trên giải thích Hệ thống phân tích tập các lời giải ví dụ ( và kết quả) nhằm ấn định khả năng đúng hoặc sai và tạo ra các giải thích dùng để hướng dẫn cách giải bài toán trong tương lai. Học dựa trên tình huống Bấy kỳ tính huống nào được hệ thống lập luận đều được lưu trữ cùng với kết quả cho dù đúng hay sai. Khi gằp tình hướng mới, hệ thống sẽ làm thích nghi hành vi đã lưu trữ với tình huống mới. Khám phá hay học không giám sát Thay vì có mục tiêu tường minh, hệ khám phá liên tục tìm kiếm các mẫu và quan hệ trong dữ liệu nhập. Các ví dụ về học không giám sát bao gồm gom cụm dữ liệu, học để nhận dạng các đặc tính cơ bản như cạnh từ các điểm ảnh. 2. Một số ví dụ: .