Đang chuẩn bị liên kết để tải về tài liệu:
Junior problems - Phần 3

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'junior problems - phần 3', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Junior problems J175. J176. Let a b 2 0 2 such that sin2 a cos 2b 2 sec a and sin2 b cos 2a 2 sec b. Prove that cos6 a cos6 b . Proposed by Titu Andreescu University of Texas at Dallas USA Solve in positive real numbers the system of equations X1 X2 --- Xn 1 p- P P V T n3 1. X1 X2 Xn X1X2-Xn Proposed by Neculai Stanciu George Emil Palade Secondary School Buzau Romania J177. Let x y z be nonnegative real numbers such that ax by cz 3abc for some positive real numbers a b c. Prove that x y y z z 2 x pxyz 4 abc 5a 5b 5c . Proposed by Titu Andreescu University of Texas at Dallas USA J178. Find the sequences of integers an n 0 and bn n 0 such that 2 p5 n an bn1 2 5 for each n 0. Proposed by Dorin Andrica Babes-Bolyai University Cluj-Napoca Romania J179. Solve in real numbers the system of equations x y y3 z3 3 z x z3 x3 y z z3 x3 3 x y x3 y3 z x x3 - y3 3 y - z y3 z3 Proposed by Titu Andreescu University of Texas at Dallas USA J180. Let a b c d be distinct real numbers such that 1 1 1 1 p a b p b c p c d p d a Prove that pa b pb c pc d pd a 0. Proposed by Dorin Andrica Babes-Bolyai University Cluj-Napoca Romania Mathematical Reflections 6 2010 1 Senior problems S175. Let p be a prime. Find all integers a1 . an such that a1 ------- an p2 p and all solutions to the equation pxn a1xn 1 an 0 are nonzero integers. Proposed by Titu Andreescu University of Texas at Dallas USA and Dorin Andrica Babes-Bolyai University Cluj-Napoca Romania S176. Let ABC be a triangle and let AA1 BB1 CC1 be cevians intersecting at P. Denote by Ka Kab1C1 Kb KBC1A1 Kc Kca1B1 . Prove that Ka1B1C1 is a root of the equation x3 Ka Kb Kc x2 - 4KaKbKc 0. Proposed by Ivan Borsenco Massachusetts Institute of Technology USA 5177. Prove that in any acute triangle ABC sin A sin B sin C 2 2 2 4R Proposed by Titu Andreescu University of Texas at Dallas USA 5178. Prove that there are sequences xk k 1 and yk k 1 of positive rational numbers such that for all positive integers n and k n 1 75 xk y 5 Fkn-1 Fkn------2

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.