Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi học sinh giỏi toán THPT lớp 12 - Năm 2001

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu đề thi học sinh giỏi toán thpt lớp 12 - năm 2001 , tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Toán học, Học sinh giỏi tỉnh Nam Định, Lớp 10, 2001 Bài từ Thư viện Khoa học VLOS. ĐỀ THI CHỌN HỌC SINH GIỎI TOÀN TỈNH NAM ĐỊNH Trường học Trung học phổ thông Lớp học 10 Năm học 2001 Môn thi Toán học Thời gian 150 phút Thang điểm 20 Câu I (4 điểm). 1) Chứng minh với mọi số thực dương a, ta luôn có: 2) Giải phương trình: Câu II (6 điểm) Tìm giá trị của m để bất phương trình: có ít nhất một nghiệm không âm. Câu III (4 điểm) Gọi S là tập hợp các điểm trong mặt phẳng tọa độ thỏa mãn hệ bất phương trình: Tìm các điểm của tập hợp S làm cho biểu thức F = y - x đạt giá trị lớn nhất. Câu IV (6 điểm). Cho tam giác ABC có H là trực tâm, biết AB = c, AC = b và BC = a. Gọi lần lượt là tâm đường tròn ngoại tiếp các tam giác HAB, HAC, HBC. Tính theo a, b, c bán kính đường tròn đi qua 3 điểm . --------------------------------------------------------HẾT-------------------------------

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.