Đang chuẩn bị liên kết để tải về tài liệu:
Elastoplastic stability of thin rectangular plates under complex and impure loading

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

This paper deals with investigation of the elastoplastic stability of thin rectangular plates. The plate considered herein is subjected to the biaxial compressive forces which are assumed to be linearly distributed along every its edge. | Vietnam Journal of Mechanics, NCST of Vol. 23, 2001, No4 (205 - 215) ELASTOPLASTIC STABILITY OF THIN RECTANGULAR PLATES UNDER COMPLEX AND IMPURE LOADING Vu CONG HAM Le Quy don Technical University ABSTRACT. This paper deals with investigation of the elastoplastic stability of thin rectangular plates. The plate considered herein is subjected to the biaxial compressive forces which are assumed to be linearly distributed along every its edge. The governing equations of the problem are formulated with applying the elastoplastic process theory whereas Bubnov - Galerkin method is used to calculate the critical forces. In the paper the author proposes a new method to determine the elements of the matrix concerned with the instability moment of the structure and applies the Gaussian quadric method for integral calculation. Some results of numerical calculations are also presented in the paper. · 1. Introduction Let 's consider a thin rectangular plate which has the biaxial dimensions a, b and the thickness h. A coordinate orthogonal system Oxyz (or Ox 1 x 2 x 3 in tensor notations) is attached to the plate so that the plane Ox y coincides with the middle surface and the four edges can be mathematically described as x = 0, y == 0, x =a, y = b, respectively. In [2 , 3, 4, 5] . the so called pure loaded state is considered. According to this loaded state, the plate is subjected to one or any combination of biaxial compressive forces p, q and shear force T (figure 1) . These external forces are assumed to act in the middle surface and to be evenly distributed along every edge of the plate. Because of this, the prebuckling stress-strain state is pure at any point in the plate Fig.1 205 This paper is concerned with the impure loading. The plate in the considered case is subjected to biaxial compressive forces p, q which are also assumed to act in the middle surface, but to be unevenly distributed along each edge, respectively. Because of mathematical difficulties, the .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.