TAILIEUCHUNG - Solution to the problem of the elastoplastic stability of thin rectangular plates in two cases of boundary condition

In this paper, the theory of the elastoplastic process is applied to derive the governing equations of stability problems of thin rectangular plates subjected to complex loading processes. The solution presented in the paper belongs to the two following cases of boundary condition. | Vietnam Journal of Mechanics, NCNST of Vietnam T. XX, 1998, No 4 (30 - 40) SOLUTION TO THE PROBLEM OF THE ELASTOPLASTIC STABILITY OF THIN RECTANGULAR PLATES IN TWO CASES OF BOUNDARY CONDITION VU CoNG HAM Le Quy Don Technical University 1. Introduction In this paper, the theory of the elastoplastic process is applied to derive the governing equations of stability problems of thin rectangular plates subjected to complex loading processes. The solution presented in the paper belongs to the two following cases of boundary condition 1) The considered plate has all four edges clamped stiffly. 2) The considered plate has two opposite edges clamped stiffly while the two others are simply supported. The plates with four edges simply supported has been considered in [4]. 2. Governing equations of the problem Let's consider a rectangular plate with the thickness h and the lengths of the edges a, b. The coordinate system Oxyz is chosen such that the middle surface of the plate coincides with the plane Oxy and the four edges can be described by X = 0, X = a, y = 0, y = b. The external forces acting on the plate are biaxial compression forces of intensity p, q and shear force r. The upper forces are assumed to be increasingly and depend arbitrarily on a some parameter t (the loading parameter) p = p(t), q = q(t), r = r(t) so that the loading is really performed in a arbitrary process. It is important to determine the critical values t = t*, p* = p(t*), q* = q(t*), r* = r(t*) at which an instability appears. 30 An analysis of the stability problem is always made in two stages: the-buckling stage and the post-buckling stage. 1. Pre-buclding stage At any moment t there exists a plane stress state i:q the plate uu = -p, u22 = -q, = -r, u12 Uta = u2a = uaa = 0 () so that u= uu + u22 3 p+q ---3 () The components of deformation velocity are determined accordi¥g to the theory of elastoplastic process [1]. In case of process with average curvature, they

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.