Đang chuẩn bị liên kết để tải về tài liệu:
Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We study the initial-boundary value problem for a system of nonlinear wave equations with nonlinear damping and source terms, in a bounded domain. The decay estimates of the energy function are established by using Nakao’s inequality. The nonexistence of global solutions is discussed under some conditions on the given parameters. | Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2013) 37: 633 – 651 ¨ ITAK ˙ c TUB doi:10.3906/mat-1110-48 Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms ˙ ¸ KIN, ˙ ∗ Necat POLAT Erhan PIS Department of Mathematics, Dicle University, 21280, Diyarbakır, Turkey Received: 24.10.2011 • Accepted: 17.04.2012 • Published Online: 12.06.2013 • Printed: 08.07.2013 Abstract: We study the initial-boundary value problem for a system of nonlinear wave equations with nonlinear damping and source terms, in a bounded domain. The decay estimates of the energy function are established by using Nakao’s inequality. The nonexistence of global solutions is discussed under some conditions on the given parameters. Key words: Decay rate, blow up, initial boundary value problem, nonlinear wave equations 1. Introduction In this paper we consider the following initial-boundary value problem: ⎧ m−1 2 ⎪ ∇u + f1 (u, v) , (x, t) ∈ Ω × (0, T ) , + |u | u = div ρ |∇u| u ⎪ tt t t ⎪ ⎪ ⎪ ⎪ r−1 2 ⎨ vtt + |vt | vt = div ρ |∇v| ∇v + f2 (u, v) , (x, t) ∈ Ω × (0, T ) , u = v = 0, (x, t) ∈ ∂Ω × (0, T ) , ⎪ ⎪ ⎪ ⎪ (x) , u (x, 0) = u (x) , x ∈ Ω, u (x, 0) = u ⎪ 0 t 1 ⎪ ⎩ v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω, (1.1) where Ω is a bounded domain with smooth boundary ∂Ω in Rn , n = 1, 2, 3; m, r ≥ 1; fi (. , .) : R2 −→ R are given functions to be specified later. Problems of this type arise in material science and physics. We assume that ρ is a function which satisfies the relation ρ (s) ∈ C 1 , ρ (s) > 0, ρ (s) + 2sρ (s) > 0 (1.2) for s > 0. (A1). Let F (u, v) = a |u + v| n = 3; f1 (u, v) = ∂F ∂u , f2 (u, v) = ∂F ∂v p+1 + 2b |uv| p+1 2 with a, b > 0, p ≥ 3 if n = 1, 2 and p = 3 if ; m, r ≥ 1 if n = 1, 2 and 1 ≤ m, r ≤ 5 if n = 3. One can easily verify that u f1 (u, v) + vf2 (u, v) = (p + 1) F (u, v) , ∀ (u, v) ∈ R2 . (1.3) Hao, Zhang and Li [6] .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.