TAILIEUCHUNG - Đề tài " Global existence and convergence for a higher order flow in conformal geometry"

An important problem in conformal geometry is the construction of conformal metrics for which a certain curvature quantity equals a prescribed function, . a constant. In two dimensions, the uniformization theorem assures the existence of a conformal metric with constant Gauss curvature. Moreover, J. Moser [20] proved that for every positive function f on S 2 satisfying f (x) = f (−x) for all x ∈ S 2 there exists a conformal metric on S 2 whose Gauss curvature is equal to f . A natural conformal invariant in dimension four is 1 Q = − (∆R −. | Annals of Mathematics Global existence and convergence for a higher order flow in conformal geometry By Simon Brendle Annals of Mathematics 158 2003 323 343 Global existence and convergence for a higher order flow in conformal geometry By Simon Brendle 1. Introduction An important problem in conformal geometry is the construction of conformal metrics for which a certain curvature quantity equals a prescribed function . a constant. In two dimensions the uniformization theorem assures the existence of a conformal metric with constant Gauss curvature. Moreover J. Moser 20 proved that for every positive function f on S2 satisfying f x f x for all x E S2 there exists a conformal metric on S2 whose Gauss curvature is equal to f . A natural conformal invariant in dimension four is Q AR R 3 Ric 2 6 where R denotes the scalar curvature and Ric the Ricci tensor. This formula can also be written in the form Q T Ar 6Ơ2 A 6 where A Ric - Rg is the Schouten tensor of M and 2 A 1 tr A 2 2 A 2 is the second elementary symmetric polynomial in its eigenvalues. Under a conformal change of the metric g e2w go the quantity Q transforms according to Q e-4w Qo Pow where P0 denotes the Paneitz operator with respect to g0. The Gauss-Bonnet-Chern theorem asserts that y QdV Ị 1 W 2dV 8n2x M . 324 SIMON BRENDLE Since the Weyl tensor W is conformally invariant it follows that the expression i QdV JM is conformally invariant too. The quantity Q plays an important role in fourdimensional conformal geometry see 2 3 5 16 note that our notation differs slightly from that in 2 3 . Moreover the Paneitz operator plays a similar role as the Laplace operator in dimension two compare 2 3 5 11 12 . We also note that the Paneitz operator is of considerable interest in mathematical physics see 10 . T. Branson . A. Chang and P. Yang 2 studied metrics for which the curvature quantity Q is constant. Since I QdV M is conformally invariant these metrics minimize the functional i Q2 dV M among all .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.