Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Tín hiệu và hệ thống: Chương 7 (Lecture 20) – Trần Quang Việt (2017)

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Bài giảng “Tín hiệu và hệ thống – Chương 7: Đáp ứng tần số của hệ thống LTI và thiết kế bộ lọc tương tự (Lecture 20)” cung cấp cho người học các kiến thức về biến đổi Fourier rời rạc (DFT), biến đổi Fourier nhanh (FFT). nội dung chi tiết. | 404001 - Tín hi u và h th ng Lecture-20 L y m u (Sampling) Lý thuy t l y m u Bi n i Fourier r i r c (DFT) Bi n i Fourier nhanh (FFT) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10 Bi n i Fourier r i r c (DFT) f (t ) = 1 2π ∞ ∫−∞ F (ω )e jωt d ω F (ω ) = ∫ −∞ fk = 1 N0 f (t )e − jωt dt N0 m u N0 m u Ω0 = 2π / N 0 N 0 = T0 / T f k = Tf (kT ) ∞ N 0 −1 ∑ r =0 Fr e jrΩ0 k Fr = N 0 −1 ∑ f k e − jrΩ0k k =0 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10 1 Bi n i Fourier nhanh (FFT) ưa ra b i Turkey and Cooley năm 1965, N0 ph i là lũy th a c a 2 2 Gi m kh i lư ng tính toán: N 0 → N 0 log N 0 N −1 N −1 fk = 0 1 0 Fr e jrΩ0 k Fr = ∑ f k e − jrΩ0k ∑ N 0 r =0 k =0 Nhân: N0 C ng: N0-1 T ng c ng cho các h s : N0N0 phép nhân và N0(N0-1) phép c ng − j 2π / N 0 ) t: WN 0 = e ( = e − jΩ0 Các bi u th c DFT ư c vi t l i: N 0 −1 Fr = ∑ N −1 1 0 − fk = ∑ FrWN 0kr N 0 r =0 kr f kWN 0 k =0 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10 Bi n i Fourier nhanh (FFT) Chia fk thành 2 chu i: ch n và l theo s th t : f 0 , f 4 , f 6 ,., f N 0 −2 f1 , f 3 , f5 ,., f N 0 −1 sequence g k sequence h k Bi u th c DFT ư c vi t l i: N0 2 Fr = −1 ∑ 2 f 2 kWN 0kr + k =0 N0 2 −1 ∑ (2 f 2 k +1WN k +1) r 0 k =0 2 Ta có: W N0 = WN 0 2 ⇒ Fr = N0 2 −1 ∑ k =0 kr f 2 kW N 0 2 r + WN 0 N0 2 −1 ∑ k =0 f 2 k +1W Nkr = G + W r H 0 2 r N0 r Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10 2 Bi n i Fourier nhanh (FFT) ⇒ Fr = N0 2 −1 ∑ kr f 2 kW N 0 2 r + WN 0 k =0 N0 2 −1 ∑ r f 2 k +1W Nkr ⇒ Fr = Gr + WN 0 H r 0 2 k =0 (0 ≤ r ≤ N 0 − 1) Do Gr và Hr là DFT N0/2 i m nên nó có tính tu n hoàn: Gr + N20 = Gr & H r + N20 = H r N0 N0 r r r M t khác: W r + 2 = W 2 WN = e − jπ WN = −WN N0 N0 0 0 0 N0 r r ⇒ Fr + N0 = Gr + N0 + WN+ 2 H r + N0 ⇒ Fr + N0 = Gr − WN H r 2 2 2 0 0 2 r Fr = Gr + WN 0 H r ; 0 ≤ r ≤ Fr + N0 2 r = Gr − WN 0 H r .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.