Đang chuẩn bị liên kết để tải về tài liệu:
Bài tập đạo hàm của hàm số

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Nhằm giúp các bạn có thêm tài liệu học tập và ôn thi môn Toán, tài liệu "Bài tập đạo hàm của hàm số" dưới đây. Nội dung tài liệu cung cấp cho các bạn những câu hỏi bài tập về đạo hàm của hàm số, vi phân của hàm số, đạo hàm và vi phân cấp cao. | BÀI TẬP ĐẠO HÀM CỦA HÀM SỐ 1. ĐẠO HÀM CỦA HÀM SỐ Bài 1: Tìm f’(1), f’(2), f’(3), nếu f(x) = (x – 1)(x – 2)2(x – 3)3 Bài 2: Khảo sát sự có đạo hàm của hàm: a). f(x) = (x – 1) tại điểm x0 = 1. b). f(x) = tại điểm x0 = 1. c). f(x) = tại điểm x0 = 0. Bài 3: Cho hàm số f(x) = . Khảo sát sự liên tục và có đạo hàm của f tại x0 = 0. Bài 4: Dùng định nghĩa tìm đạo hàm của các hàm số sau: a) y = . b) y = . c) y = d) y = Bài 5: Giả sử y = (x) là hàm số liên tục tại x0 = a và (a) ≠ 0. Chứng minh rằng hàm số: y = f(x) = (x) không có đạo hàm tại x0 = a. Bài 6: Dùng các công thức và quy tắc tính đạo hàm, tìm đạo hàm của các hàm sau đây: a). y = 2x3 – 5x2 + 7x + 4. b) y = x2 ex. c) y = . d) y = (3 + 2x2)4. e) y = ln(arcsin5x). f) y = cos{cos(cosx)}. g) y = , 0. c.) < ln < nếu 0 < b < a. Bài 4: Giả sử hàm f(x) xác định, liên tục, dương trên [a, b] và khả vi trên (a, b). Chứng minh rằng tồn tại c (a, b), sao cho = . Bài 5: Chứng minh rằng phương trình x + ln(x2 – 1) = 0 có một nghiệm duy nhất thuộc (1, +∞). Bài 6: Tìm giá trị lớn nhất và nhỏ nhất của hàm trên D. a.) f(x) = x4 – 4x3 + 3 trên đoạn [-1, 4]. b.) f(x) = x2 trên đoạn [-1, 1]. c.) f(x) = cosx + cos2x trên đoạn [0, π]. Bài 7: a) Biểu diễn f(x) = dưới dạng đa thức bậc 5 đối với x – 1. b) Biểu diễn f(x) = ax dưới dạng đa thức bậc 3 đối với x. c) Tính chính xác đến 0,0001. Bài 8: Khử dạng vô định nhờ quy tắc L’.Hospital a) . b) . c) . d) . e) . f) . g) . h)

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.